AD-A231 805

e
Ry FQPY

S %

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information s estimated 10 average ! hour per response, including the time for reviewing iInstructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the coliection of information Send comments regarding this burden estimate or any other aspect of thiy
coltection of information, including suggestions for reducing this burden. to Wastungton Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Aclington, VA 220024302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (lLeave blank) 12. REPORT DATE 3. REPORT TYPE AND DATES COVERED

1990 Thesis/

4. TITLE AND SUBTITLE

Increasing the Readability and Compvehensibility of
Programs

5. FUNDING NUMBERS

5. AUTHOR(S)

Thomas Michael Schorsch

7. PEKFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
AFIT Student at: University of Colorado

8. PERFORMING ORGANIZATION
REPORT NUMBER

AFIT/CI/CIA -90-141

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS{ES)
AFIT/CI
Wright-Ptatterson AFB OH 45433

10. SPONSORING / MONITORING
AGENCY REPORT NUMEER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release IAW AFR 190-1
Distribution Unlimited

ERNEST A. HAYGOOD, lst Lt, USAF

Executive Officer, Civilian Institution Programs

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

DTIC

ELECTE
FEBO 7 1991

14. SUBJECT TERMS

15. NUMBER OF PAGES
75

16. PRICE CODE

17. SECURITY CLASSIFICATION |[18. SECURITY CLASSIFICATION] 19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAG: OF ABSTRACT
UNCLASSIFIED

NSN 7540-01-280-5500

Standard Form 298 (Rev 2-89)
Proger Do By, ANG Stg J6'8
[T

INCREASING THE READABILITY AND
COMPREHENSIBILITY OF PROGRAMS
by
THOMAS MICHAEL SCHORSCH
B. A., United States Air Force Academy, 1985

A thesis submitted to the
Faculty of the Graduate School of the
University of Colorado in partial fulfillment
of the requirements for the degree of
Master of Science

Department of Computer Science

1990

81 2 96 109

This thesis for the Master of Science degree by
Thomas Michael Schorsch
has been approved for the
Department of

Computer Science

by

BA’/VLMVW’L%)"\

T
'ﬁen jamin Zor

/&JJ & f//e&\

Michael Main

William Waite

Accession For

<

NTIS GRAXI ™ g
DTIC TAB 0
Unanuounced O

Justitication

Date /D/LOU/’C7

By _ . _
| Distribution/

Availability Codes
|[Avail and/or
iDist Special

/\l
R

iii

Schorsch, Thomas Michael (M. S., Computer Science)
Increasing the Readability and Comprehensibility of Programs

Thesis directed by Professor Benjamin Zorn

i Source code must be readable and understandable in order to be debugged,
used, and maintained efficiently and effectively. Creating programs that are easily
read and understood is important, but not as simple as one might think. This thesis
surveys the ways in which programming style, programming language design and
program presentation influence a person’s ability to read and understand program
text. It is concerned with solving small scale problems associated with individual
functions or files and not with problems that pertain exclusively to large software
systems.\ Software engineering issues, while important, are not included in this thesis.

—)The programming style chapter examines the changes a programmer may
make to source code without modifying the content or meaning of the code. Two of
the main sections cover code reformatting and identifier naming conventions. The
chapter on language design discusses the selection of basic tokens (symbols and key-
words) and the structure of language statements. This chapter also categorizes the
subtle errors that occur when the meanings of a code segment when read and when
executed are not the same. The program presentation chapter presents methods for
enhancing completed source code making it easier to read and its true meaning easier
to discern. Restructuring/transforming the code, graphic design principles, and in-
troducing supplemental information are some of the main sections. Knuth's literate
programming paradigm is examined in this chapter as well. One of the underlying

themes of the thesis is that an automated proofreader program could greatly aid
:_. -

programmers to create readable, understandable programs.

DEDICATION

To SMS (both).

CONTENTS

CHAPTER

1 INTRODUCTION o e e e e e e e 1
1.1 Motivation e 1

1.2 What this thesisisandisnot 2

2 PROGRAMMINGSTYLE 5
2.1 lowercase versus UPPERCASE 6
2.2 FormattingtheCode 9
22.1 Indentation. 9

222 VisualBlocks. 11

2.2.3 Horizontal Alignment. 13

224 Codespacing., 13

2.3 Naming Conventions 15
2.3.1 Abbreviations. o Lo oL 16

2.3.2 Meaningful Names. 19

24 Comments e e e 23
25 OddsandEnds 25
2.5.1 To default ornot todefault. 25

252 Magicnumbers. Lo o oL 27

3 PROGRAMMING LANGUAGEDESIGN 29
3.1 Basic Language Tokens 30
31,1 Keywords. 0 i e e e e e 30

3.1.2 Symbols. e 32

3.2 Statement Structure.t 35

3.2.1 Statement terminators versus statement separators. .

322 ClosingKeywords.

3.2.3 Intermediate keywords versus intermediate symbols. . . .

3.3 Syntactic Subtleties Lo
3.4 Programming Language Abominations

4 PROGRAM PRESENTATION.
4.1 ReformattingtheCode
4.2 GraphicDesign,
4.3 Program Transformations
4.4 Additional Information
4.5 Literate Programming

5 CONCLUSIONS o e e e e e e e e
5.1 Readable Programs are Important
5.2 Programming for Readability is Not a Simple Task
5.3 Programming Languages Can be Designed to be More Readable
5.4 Programming Languages Should have Automated Proofreaders .
5.5 Standard Disclaimer.
BIBLIOGRAPHY i e e e

vi

FIGURE
1.1
21
2.2
2.3
2.4
2.5
2.6
2.7
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
4.1

FIGURES

Syntactically correct but otherwise unreadablecode 1
Comparison of four character case programming styles 8
Indentation styles 10
Readability of nested if statements 12
Readability and horizontal code alignment 14
Code spacing improves readability 15
Different aspects to consider when selecting an identifier’s name . . 21

Sample identifier names derived from type names 21
PL/1 reserved words and abbreviations (Not matched) 31
Overloaded identifiers and keywords 32
Comparison of four different ‘field’ operators 34
Begin ... end must be added with a second statement 37
Begin ... end pairs increase the syntactic ‘noise’ 38
Dangling elseproblem 38

Begin ... end can sometimes be necessary around a single statement 39

Null statement problem 40
Compactness of constructs that have no closing keyword 40
Intermediate keywords versus intermediate symbols 41

Case statcment with symbols versus when statement with keywords 41
PL/1 subtleties which causeerrors. 44
Syntactic subtlety in Fortrancode 46

Comparison of vertical and horizontal spacing 52

vili

4.2 Using different sizes and styles of fonts to accentuate constructs . . 55

4.3 Assignment statement versus mathematical equation 57

CHAPTER 1

INTRODUCTION

This thesis examines the role that coding style, programming language
design, and source code presentation have in increasing a person’s ability to read

and understand programs.

1.1 Motivation

Writing a syntactically cor.ect program (one that a compiler will compile) is
necessary but hardly sufficient. Compilers, by definition, are good at translating code
and determining its meaning where as people are not. As an extreme example, the
code in figure 1.1 is syntactically correct and presents no problems to the compiler;
the difficulty it causes humans is obvious. People require a more readable style of
coding in order to understand a program. Even then it is easy to misinterpret what
a program will do, especially if the language in which it was written has ambiguous
constructs (a compiler will always interpret a statement the same way, a human

reader may interpret the meaning of the statement differently).

float A(x) float
x ; {11 (x <0) return(-
x) ;return (x);}float sr(
x Jfloat x ;{ float g, a;a =0.00001;
if (x
< 0){ printf(
"error") ;return (-1.0
) ;Jwhile (A (g *g -
x) >=a)g =(x /g+
g)/2.0 ;return(g):}

Figure 1.1: Syntactically correct but otherwise unreadable code

The term ‘coding’ originated from the process “programmers™ went through
to translate their high level algorithms into a series of numeric codes or assembly
language codes which the computer could understand (pre-Fortran days). Much of
the code written was "write once read never’; it was often easier to recode a small
program then to try and modify it. Much has changed since then; now programmers
spend an enormous amount of their time reading ‘code’, especially during debugging
and testing. Some things have remained the same though; Fjeldstad and Hamlen, in
a study on program maintenance, report that understanding the intent and style of
another person’s code was recorded as the major difficulty in making a change[21].
They also report that nearly half of a maintenance programmer’s time is spent
analyzing the program text and documentation. In view of the preponderance of time
and energy the maintenance task consumes for a typical software system (Between
50% and 75% [58]) and the time spent coding and debugging the program in the
first place, the additional requirement that programs be readable and understandable
cannnt he stressed highly enough.

People must be able to read and understand a program in order to use.
debug, maintain, and modify it efficiently and effectively. The easier it is to compre-
hend a segment of ccde, the easier it is to be assured that the code is correct and
reliable, or if it is not, to make it so. The degree to which a program can be compre-
hended is influenced by the style of its author, the language in which it is written.
and the form in which it is presented to the reader. For these reasons, programmers
and language designers need to be more aware of the choices available to them that

will directly affect the creation of comprehensible software systems.

1.2 What this thesis is and is not
The programming languages discussed in this thesis are for the most part

widely-used imperative, programming languages (Ada, C, Cobol, Fortran. Pascal.

-

PL/1, Modula-2), with a few digressions into Lisp and APL. No aitempt has been
made to include the more esoteric imperative programming languages, functional
programming languages, or the object-oriented versions of existing mainstream lan-
guages. However, in spite of this bias, most of what is presented should be applicable
to all programming languages.

The first chapter in the body of this thesis covers aspects of programming
style. It contains a plethora of postulates and principles on how programs can be
written to be more readable. In many cases the syntax and semantics of a language
affect the style of programming that is most effective. In these cases the tradeoffs
in readability of one style over another are discussed in terms of several specific
language syntaxes. The arguments why, and uses when, one programming style is
superior over another are presented.

The second chapter examines how to design a programming language that
facilitates creating readable programs. This inquiry takes the bottom up approach.
It scrutinizes first the basic tokens that make up a programming language, continues
with the structure of a basic programming language statement, and ends with the
design of programming language features. Individual decisions as to what syntac-
tic form a language construct should take are weighed in terms of the tradeoffs in
readability.

The last chapter in the body of the thesis examines how the readableness
of a program can be increased by changing how it is presented. In particular, this
section examines how reformatting the program, using graphic design principles,
transforming the code, and supplying additional information about the program can

greatly enhance the readability of the program. Knuth’s “literate programming”

paradigm is examined as well.
This thesis is mainly concerned with readability on a small scale. Pro-

gramming styles are surveyed and analyzed but program design is not. The use of

structured systems design and top-down, bottom-up, data-criented implementation
techniques all lead to more readable code. Concepts like module coupling and co-
hesion are also impcrtant. These topics ard others like them, while important in
creating readable code, are beyond the scope of this thesis.

Similarly, this thesis looks at programming language design on a small
scale instead of the design of a language as a whole. Language designs that support
abstract data types, modules, encapsulation, and information hiding can be helpful
for creating readable programs, these higher level language design issues are also
outside the scope of this thesis. The search for the most readable language constructs
and the most readable programming language depends too much on the problem
being solved. Higher level language design issues such as what control structures and
data structures are the most readable are not covered either. It is fairly easy to point
to language constructs which impair readability, either because they are amenable to
being used in an unreadable manner (e.g. the COME FROM statement [14]) or because
the construct has an unreadable syntax. This thesis does discuss how to make a given
control structure more readable. It also identifies several undesirable features that
programming language constructs can have and offers suggestions to help remove or

mitigate the effects of those features.

CHAPTER 2

PROGRAMMING STYLE

What is written without effort is in general read without pleasure
—Samuel Johnson

Beginning programmers believe they are writing code for a machine to read;
more experienced programmers know they are writing programs for people to read.
Programs written without readability as a goal require substantial extra effort to
be understood. Programming specifically for readability is possible; Weinberg and
Schulman demonstrated that programmers can write substantially different solutions
to a problem depending upon whether program efficiency, size, or readability was
stressed [70]. With current memory technology the way it is, the size of programs
is rarely an important issue. The case against efficiency cannot be expressed better
than Wulf’s statement: “More computing sins have been committed in the name of
efficiency (without necessarily achieving it) than for any other reason — including
blind stupidity” [78].

Readability is clearly important as any given piece of code is read many
times by the original author during the writing, debugging, and testing phases and
by any maintenance programmers that succeed her. One of the main influences on
the rcadability of a program is the style of its author. This chapter explores the
aspects of programming style which can enhance the ability of a program to be read

and understood independent of the language in which it was written.

2.1 lowercase versus UPPERCASE

There have been numerous experiments [54, 10, 55, 57], many of them pre-
dating the existence of computers, that prove that UPPERCASE BY ITSELF IS
LESS READABLE THAN LOWERCASE. Text consisting only of uppercase char-
acters is harsh and jolting to the eye. The lowercase character set contains ‘dis-
tenders’ that enable readers to read and recognize lowercase words easier then the
same uppercase words [55, 49]. A distender is that portion of an individual charac-
ter symbol which protrudes from the rest of the character string. For example, the
uppercase character string, PRETTY, has no distenders while the lowercase character
string, pretty has four: p, two t’s, and y. The above citations agree that lowercase
and mixed upper and lowercase, Pretty, is read 10-20% faster and comprehended
better than uppercase alone,

In the past, programs were written using only capital letters due to the lim-
ited input and output devices of the early computers. Two of the oldest languages,
Fortran and Cobol, have yet to escape their roots. Even though uppercase characters
are not required by the language definitions, textbooks, journals, and new defining
documents for Fortran and Cobol continue to use only uppercase characters in pro-
gramming examples. Only a few textbooks can be found for both languages that use
lowercase and mixed case programming examples {31, 65]. A later language, Pascal,
was transitional in that its defining documents used lowercase examples [74, 34],
yet many computing devices still could not support lowercase. Strangely enough,
textbooks on Pascal can still be found which use only uppercase programming ex-
amples [7].

More recent languages, Ada, C, Fortran 8x, and Modula-2 have taken very
different approaches. C considers upper and lowercases to be syntactically distinct
and has defined all keywords to be lowercase [38]. C programming style encour-

ages all identifier names (except macros) to be lowercase and to capitalize the first

character of important words in identifiers. Modula-2 on the other hand requires
that keywords be in uppercase [77], but encourages user defined identifiers to be
lowercase or capitalized like C’s style. Ada does not require keywords to be of any
case, but Ada’s defining document has all keywords in lowercase and the user defined
identifiers in uppercase [1], the opposite of Modula-2. Fortran 8x, like its Fortran
predecessors, uses only uppercase characters [2].

The programming style that is used most for a given language is often the
one that appears in the defining documents for that language. Figure 2.1 illustrates
the four different styles of using character case while programming. The readability
of the four versions of the program is affected by the familiarity of a programmer
with a particular coding style, and the syntax of the language in which the example
was written. The readableness of the code must be offset by the need to visually
distinguish keywords, identifiers, and comments. The original version of the code
was taken from a textbook on Fortran 8x programming [47, pp. 299].

The Modula-2 style is the best style to use where readability is concerned;
the user defined identifiers, which make up the bulk of the text, are in the easy to read
lowercase. The individual words in an identifier are capitalized to make each word
standout better. The keywords are written using only capital letters which visually
sets them apart from the rest of the code. Also keywords often need to be searched
for and found quickly; studies have shown that uppercase characters can be used to
draw attention to a limited subset of the text and to aid in searching [68]. Coming in
a close second is the Ada style. Reserved words and identifiers are distinguished, but
the bulk of the text is capitalized. Since comments are normally written in lowercase,
to give them as little visual impact as possible, this style differentiates code and
comments very well. The C style is probably third best in terms of readability, key
words and identifiers are not distinguished by case, nor are the comments. However,

important identifiers are capitalized which helps slightly. Fortran style, all capital

! Randomize the order of a sorted
! deck of cards
SUBROUTINE SHUFFLE(CARDS)
INTEGER, DIMENSION(52) :: CARDS
INTEGER LEFT, CHOICE, I, TEMP, R
CARDS = (/ (I, I=1,52) /)
DO LEFT = 52,1,-1
CALL RANDCM(R)
CHOICE = R+LEFT + 1
TEMP = CARDS(LEFT)
CARD(LEFT) = CARDS(CHDICE)
CARDS(CHOICE) = TEMP
END DO
END

Fortran 8x style

! Randomize the order of a sorted
! deck of cards
subroutine SHUFFLE(CARDS)
integer, dimension(52) :: CARDS
integer LEFT, CHOICE, I, TEMP, R
CARDS = (/ (I, I=1,52) /)
do LEFT = 52,1,-1
call RANDOM(R)
CHOICE = R*LEFT + 1
TEMP = CARDS(LEFT)
CARD(LEFT) = CARDS(CHOICE)
CARDS(CHOICE) = TEMP
end do
end

Ada style

! Randomize the order of a sorted
! deck of cards
subroutine Shuffle(Cards)
integer, dimension(562) :: Cards
integer Left, Choice, I, temp, T
Cards = (/ (I, I=1,52) /)
do Left = 52,1,~-1
call Random(r)
Choice = r*Left + 1
temp = Cards(Left)
Card(Left) = Cards{Choice)
Cards(Choice) = temp
end do
end

C style

! Randomize the order of a sorted
! deck of cards
SUBROUTINE Shuffle(Cards)
INTEGER, DIMENSION(52) :: Cards
INTEGER Left, Choice, I, temp, T
Cards = (/ (I, I=1,52) /)
DO Left = 52,1,-1
CALL Random(r)
Choice = r#*Left + 1
temp = Cards(Left)
Card(Left) = Cards(Choice)
Cards(Choice) = temp
END DO
END

Modula-2 style

Figure 2.1: Comparison of four character case programming styles

letters, is the worst style to read. The fact that lowercase comments are easily
distinguished from the code itself is its one advantage.

On a dissenting note, the superiority of lowercase over uppercase is affected
by the syntax of the language. Falkoff argues that identifiers should be uppercase
in APL because there is a greater potential for lowercase characters to be confused
with the many specialized operator symbols [20]. Uppercase characters provide a
greater contrast with the operator symbols in APL than do the smaller lowercase

characters; this makes the operator symbols easier to spot.

2.2 Formatting the Code

Programming languages are for the most part extremely lenient with how
program text can be positioned. An arbitrary number of spaces, tabs, and carriage
returns (white space) can usually be placed between any two programming language
constructs. This freedom presents an opportunity for the programmer to format the
code in a readable manner.

2.2.1 Indentation. Proper indentation of programs has a long his-
tory of research. Many of the later studies contradict earlier findings that indicated
code indentation did not improve readability [71, 48]. Some of the earlier, contro-
versial studies on indentation were flawed as non-block structured languages were
used (Cobol and Fortran) or many GOTO constructs were used. Both led to test code
that was non-structured and therefore any indentation was of little help. It is gen-
erally agreed now that indentation provides perceptual clues that aid the reader in
understanding the block structure of a program. The fact that there was a contro-
versy over the benefits of indentation in the first place indicates that many aspects
of indentation were not understood. One of the better studies, done by Miara and
others, shows that two to four spaces of indentation are optimal and that six spaces

of indentation is below optimal, but is still better than no indentation at all [48].

10

In figure 2.2 the words start and finish represent opening and closing
keywords (or symbols) of a control statement, and block represents one or more
statements nested within the control statement. The three indentation styles differ
only in the placement of the finish keyword. Again, styles attributed to a pro-
gramming language were taken from defining documents of that language, and are

usually the most common style used.

start start

block block Star:;lock finish
finish finish
Ada PL/1 Lisp

Figure 2.2: Indentation styles

The first indentation style enables the reader to quickly scan to the left
and downward to find the closing keyword. This style is particularly well suited to
Ada which has matching paired keywords: if ... end if,case ... end case, and
loop ... end loop. The second indentation style, used by PL/1, enables the reader
to quickly find the statement following the indented block. The closing keyword is
‘hidden’. PL/1, in contrast with Ada, has only one closing keyword, end. It adds
little information to understanding the code beyond the obvious fact that it closes a
control statement so there is no need to draw attention to it. Modula-2 also has end
as its only closing keyword but, because of their common roots in Pascal, Modula-2
uses the same indentation style as Ada.

The last indentation style is used mainly to keep the closing symbol (or
keyword) as far away from the reader’s main area of concentration as is possible.
Lisp uses parenthesis,(...), as opening and closing symbols, and it is not un-
common to find five or six contiguous closing parenthesis. Because there can be so
many parenthesis, so close together, the closing symbol in Lisp provides even less

information to the reader than the closing end did in Modula-2. Many programmers

11

rely on their editor to briefly display the matching beginning parenthesis whenever
the closing parenthesis is typed in. Unlike many other languages, the reader of Lisp
code is uninuely forced to use indentation alone to determine block structure and
only attempts to match the multitude of pairs of parenthesis as a last resort (usually
when the code was indented improperly).

Code is indented for the benefit of the writer and the reader. Kernighan
and Plauger, in their book The Elements of Programming Style offer the following
warning: “Indentation must be done carefully, however, lest you confuse rather than
enlighten.” [39, pp. 146]. To emphasize the point they present a programming
example with ill-chosen indentation followed by two improved versions. Figures 2.3a
and 2.3b contain the same code, they differ only in the amount of white space used
and the indentation method. Both figures use an acceptable meiliod ior formatting
nested if statements. Figure 2.3b, however, is much more readable. The structure
of the program is evident and the programmer can then see that changing the code
slightly will create figure 2.3c, which is even more readable than the first two. Oman
and Cook tested the three versions of code and found that the modifications to style
and structure significantly increased the comprehension of the revised versions [52].
This example demonstrates that indentation rules should not be followed blindly.
Each portion of the text must be examined and indented to bring out the similarities
in the textual form and to reveal the underlying structure of the code.

2.2.2 Visual Blocks. It is interesting to note that these perceptual
cues which the reader depends on are completely ignored by compilers. If a program’s
indentations do not match the underlying code it is possible that the compiler and
programmer are reading two different meanings. Bhujade proposes that languages
should be extended to support “visual block specifications” [8]. Statements with the
same indentation level form an implicit block. The traditional form of creating a

block, start ... finish, would override the implicit intent of the visually specified

IF A>B
THEN S := 1
ELSE IF A = B
THEN IF C > D
THEN S := 2
ELSE S := 3
ELSE IF C > D
THEN S := 4
ELSE IF C =D
THEN S := &
ELSE S := 6;
Original code, 2.3a
IF A>B THEN S := 1
ELSE IF A=B THEN
IF C>D THEN S := 2
ELSE S := 3
ELSE IF C>D THEN S := 4
ELSE IF C=D THEN S := §
ELSE S := 6;
Typographically modified code, 2.3b
IF A>B THEN S := 1
ELSE IF (A=B) AND (C>D) THEN S := 2
ELSE IF A=B THEN S := 3
ELSE IF C>D THEN S := 4
ELSE IF C=D THEN S := 6§
ELSE S := 6;

Structurally modified code, 2.3c

Figure 2.3: Readability of nested if statements

12

13

block when necessary. Leinbaugh goes even further and argues that indentation alone
is sufficient to represent a programs block structure and that compound statements
and closing keywords are not necessary [45].

Using visual blocks to connote a program’s structure makes proper inden-
tation compulsory for the programmer and forces the program writer, reader, and
language compiler to use the same syntax when parsing the program text. This
form of block structuring will work well for small segments of code. If the blocks of
code are very large, the nesting level becomes very deep, or the nesting level changes
frequently, then the traditional method of block structuring may be more readable.

2.2.3 Horizontal Alignment. Another common method of format-
ting the program is to align code horizontally as well as vertically. When several
contiguous program statements have the same syntactic forms, readability is in-
creased by placing like operands or operators in columns. Figure 2.4 compares a
segment of code, taken from the Pascal User Manual and Report [34, pp 60], and a
horizontally aligned version. The aligned version is obviously easier and more pleas-
ant to read. Figure 2.3 also contains good and bad examples of horizontally aligned
code.

2.2.4 Code spacing. Another method that improves readability by
restructuring the code is code spacing. For example, statements that perform a
single logical action can be separated from the rest of the code by surrounding them
with one or more blank lines. The reader can assign a single meaning to a group
of statements and need not examine each statement individually to determine its
purpose. If all statments are contiguous the reader has no visual break point to help
separate and define the different actions that are taking place.

Similarly, statements that have a common property should be grouped to-
gether and separated from other statements. When constructs with a similar prop-

erty are grouped together the reader can determine that property for one or more of

14

var ch: char;
count: array[’a’..’z’] of integer;
letter: set of ’a’..’z?;
begin 1letter := [’a’..’z’];
for ch := ’a’ to ’z’ do countfch] := 0;

Original code
var ch : char;

count : array [’a’..’z’] of integer;
letter: set of ’a’..’z?;

begin
letter := [’a’..’z’];
for ch := 'a’ to ’z’ do count[ch] := 0;

Aligned code

Figure 2.4: Readability and horizontal code alignment

15

the constructs and immediately infer that the rest of the constructs have that same
property. As an example, when global variable declarations are separated from local
variable declarations the reader can easily see which variable has what properties. If
the two types of declarations are intermixed the readers job becomes harder.

Code spacing can also affect how readable a single statement is. Figure 2.5
demonstrates the difference code spacing can have on readability by showing three
versions of the same statement. The first version leads the reader to misinterpret
the code. The second, while not misleading, is nonjudgemental as to the correct
interpretation. The last version increases the likelihood that the reader will perceive

the correct meaning.

42+ / B-C Incorrect spacing
42+ A /B-C Correct but nonjudgemental
42 + A/B - C Proper spacing

Figure 2.5: Code spacing improves readability

Some languages, such as Cobol, require that the programmer place at least
one space between operators and the operands. Generally features that try to force
a particular style of writing upon a programmer are more burdensome than they are
successful. An enhancement to the compiler, or some type of style checker, could

easily search for such inconsistencies in the code and warn the programmer.

2.3 Naming Conventions

User defined identifiers usually represent the largest portion of any program
text. If these identifiers are named poorly a person’s ability to read and comprehend
the program is greatly impaired. Conversely, if the names are well suited for the
identifiers the readability of the program is enhanced. Knowing something’s true
name, as opposed to a name that does not fit it well, gives you power over that thing
(this basic idea is often used in fairy tales and folklore; knowing a persons true given

name gives you power over that person).

16

Textbooks on programming often contain very little information on the
proper naming of identifiers; usually the most said about the subject is “names for
identifiers must be descriptive”. Programmers spend considerable time deciding on
appropriate names for their identifiers but have very few guidelines to help them.
Sometimes the languages themselves hinder the programmers efforts by limiting how
long names could be; at one time Fortran names had a maximum length of six
characters and Basic names could only be two characters in length. This limit on
the length of identifier names is one reason why acronyms and abbreviations became
so prevalent.

Wirth, in a paper on structured programming, notes “Our most important
mental tool for coping with complexity is abstraction.” [75]. The name of an iden-
tifier should be an abstraction of its purpose and use. Suitable abstractions remove
the neced to remember information about an identifier; anything worth knowing is
contained in, or made obvious by, the identifier’s name.

2.3.1 Abbreviations. An abbreviation is a new word that has the
same meaning as an existing word. The new word is invariably shorter, but less
readable thar the word for which it stands. Some of the more common methods of

creating an abbreviation are listed below:

Truncate Eliminate letters from the end of a word.

Drop letters Eliminate letters starting with the most frequently used
English letters (vowels first).

Phonetic Rewrite the word using a phonetic spelling.

Concatenate Retain first and last letter(s) and eliminate letters from
the middle of a word.

Natural method Use any abbreviation method (usually one of the above)

that appears to abbre ‘iate the word the best.

Programmers often overuse (abuse) abbreviations, usually in an attempt
to shorten the amount of typing they have to do when keying in a program. Many
programmers succumb to the TLA (Three Letter Abbreviation) mind-set. Even

words that have only four or five letters to begin with are commonly shortened to

17

three letters. The savings in typing time for most abhbreviations is minuscule, and is
more than likely lost to increased disciphering time later as well as the time it takes
to decide upon the appropriate abbreviation to begin with.

Newsted phrased it well when he wrote “One programmer’s mnemonic is
another’s gobbledegook” [51]. Often the programmer who created the abbreviation
may not be able to remember what it stands for later. Most editors allow arbitrary
character strings to be searched for and replaced; so even if an abbreviation is used
to “save typing”, it can and should be replaced with its more substantial, palatable
namesake as soon as possible,

The reader of a program filled with abbreviations literally has to learn a
new vocabulary in order to understand the program. New vocabulary words and
abbreviations differ in content though. The new vocabulary word usually has a
meaning different from other known words, enables certain concepts to be expressed
better, and thus provides its own incentive to be learned and remembered. The
abbreviation on the other hand is merely a poor replacement for the original word,
imparts no additional meaning, and provides its own frustration whenever used and
not understood.

Ehrenreich examines and synthesizes the results of over 20 different studies
on 11 different abbreviation techniques [19]. Most of the studies dealt with encoding
(creating) abbreviations as opposed to decoding (understanding) abbreviations. He

came to the following conjectures ‘vhich are supported by the studies:

¢ People do not encode words in the same manner even when using the same
abbreviation technique.

o The ‘Natural method’ of abbreviation is not natural as there is little agree-
ment on the correct encoding for any given word.

¢ Rule generated abbreviations are generally superior to the ‘Natural method’
when encoding.

e The simpler rule techniques are better than more complex ones when encod-

ing.

18

e Truncation is as good or better than any other abbreviation technique when
encoding.
e No abbreviation technique has been found to be superior for decoding.

Ehrenreich’s conjectures can be summarized and restated so they have greater rele-

vance to program readability.

o If abbreviations are not standardized different programmers will invariably
encode the same word in several different ways thus decreasing readability
even further.

o The ‘Natural method’ of abbreviation used by most people may not be the
best technique to use, a simple rule method such as truncation, or dropping
the vowels may be better.

¢ No known abbreviation technique will enhance readability over any other

method; the best way to be clear and unambiguous is to not abbreviate at
all.

If abbreviations are to be used, they should be used sparingly. Multiple
abbreviated words per identifier and multiple abbreviated identifiers per statement
read like a cryptographers nightmare. Carter suggests creating a list of approved
identifiers and abbreviations before starting to program [13]. This will limit the
number of abbreviations that could be used in a program, provide the reader with a
look up table that matches abbreviations with their parent word, and aid in main-
taining the consistency of abbreviations across multiple programming efforts. Each
abbreviation placed in the list should be examined carefully. If an abbreviated word
appears difficult to decode imagine how hard it will be for a person who did not
write it.

Carter also offers several guidelines on choosing abbreviations.

Use only one abbreviation, if any, per word.

If an abbreviation is defined then use it consistently, and not the full word.
Drop letters from the end of the word, and not the middle (truncation).
An abbreviation must be at least three letters shorter than the parent word.
Abbreviations for two different words should not be the same.

An abbreviation for one word should not be a possible abbreviation of an-
other word.

e An abbreviation for one word should not be the valid full name of another
word.

19

Do not abbreviate words that occur seldom in a program; nothing is gained
by the abbreviation. If a word is used in several identifiers, is used frequently
throughout a program, and its abbreviation is easy to decode, perhaps the read-
ability lost by using an abbreviation can be reclaimed in other areas. Using the
same abbreviation throughout a program may significantly reduce the amount of
code that must be scanned and make certain expressions and statements more con-
cise. Perhaps some multi-line statments can be eliminated and some awkwardly long
expressions can be shortened. The reader, spotting the same abbreviated word over
and over, will decode it easier each time.

Some abbreviated words have become “standard” through their repeated
use in programs and can thereby be safely used. The following example abbreviations
fit that category, they are very easy to decode: max, min, ptr, pos, col (especially
when used in conjunction with row), and num. Use an abbreviated word only if the
factors in the two paragraphs above will offset the reduced readability caused by
using the abbreviated word in the first place.

2.3.2 Meaningful Names. The name of an identifier should reflect
its purpose; its usage and scope should act as modifiers to the name. An identifier’s
name must quantitatively differentiate it from all other identifiers active in the same
scope. Its meaning must be clear and unambiguous given the context in which it
is used. If an identifier’s scope is global to a program, or it is “exported” from
a module, its name must be very descriptive. If an identifier is local to a single
subroutine a shorter, less descriptive name can be used safely.

The best name for an identifier is both descriptive and short. Usually the
longer the name, the more descriptive it is; but longer names are also more awkward
to use. Obviously, using shorter names will make the code more compact, but shorter
names are invariably less descriptive. If an identifier is used mainly by itself, or with

a few other identifiers, its length does not matter as much. An identifier that is often

20

combined with many other identifiers should be as short as possible. Mathematical
functions like tangent and cosine are usually abbreviated as tan and cos because
they are often combined with many other identifiers in expressions; the shorter names
make them easier to read.

Figures 2.6a and 2.6b compare the readability of two different names for
the same identifier: I, and AircraftCounter. In this example I is the more readable
variable name, it is descriptive of its purpose within the program — to be a counter
variable. Under different circumstances AircraftCounter may be the better choice,
it is more descriptive in terms of the problem domain. The context in which an
identifier appears can be used to eliminate redundant information [44]. The fact
that aircraft are on radar, are arriving, and are being placed in a holding pattern
adds no new information that could not be easily discerned by the nature of the
program. Figure 2.6c gives a more readable representation by removing superfluous
words.

Daniel Keller, in an article on naming conventions, offers several guidelines
to follow when choosing names [37]. Keller believes that the names for type identifiers
should be chosen first as the type name becomes the core of all other identifier names.
Type names should be short, simple and generic, preferably nouns. Procedures imply
action and their name should include a verb. The form “verb + type name” can
be used if the procedure acts upon a specific type. Variables and function’s should
be named “adjective + type name” as they reference a specific value. Figure 2.7
contains examples of good names using Keller’s naming conventions.

When a type forms the basis for variable, function, and procedure names it
is easier to spot the connections between these different entities. Variables with the
same type hold related values; the adjective modifiers in the names of the variables

should specify that relationship. The type that is returned from a function is im-

FOR AircraftCounter = 1 TO NumberOfAircraftOnRadar DO
IF AircraftIsArriving(AircraftOnRadar[AircraftCounter]) THEN
PlaceAircraftInHoldingPattern(AircraftOnRadar[AircraftCounter]);
END IF
END FOR
Figure 2.6a, Long unwieldy identifier names,
each specified in terms of the problem domain

FOR I = 1 TO NumberOfAircraftOnRadar DO
IF AircraftIsArriving(AircraftOnRadar[I]) THEN
PlacedircraftInHoldingPattern(AircraftOnRadar([I]);
END IF
END FOR
Figure 2.6b, ‘I’ has meaning in terms of the program,
not the problem domain

FOR I = 1 TO NumberOnRadar DO
IF Arrival(OnRadar([I]) THEN
PlaceInHoldingPattern(OnRadar[I]);
END IF
END FOR
Figure 2.6¢, Removing redundant information from an identifier’s name

Figure 2.6: Different aspects to consider when selecting an identifier’s name

Types Procedures Variables & Functions
Verb + TypeName | Adjective + TypeName

Table PrintTable SymbolNameTable

Window DeleteWindow HelpWindow

Page DisplayPage TitlePage

Address ChangeAddress HomeAddress

FileName OpenFileName LogFileName

MachineState || CheckMachineState | CurrentMachineState

Figure 2.7: Sample identifier names derived from type names

21

22

mediately apparent from the functions name; the modifiers in the name can explain
how the data being returned was derived.

In an earlier article on naming conventions, N. Anand states that the most
difficult task in understanding a large program is the need for the reader to remember
an immense amount of information about that program [3]. He argues that all
identifiers in a program should be given a “functional description” (which is merely a
statement as to the identifier’s purpose in the program). If all identifiers in a program
are then named according to their “functional description”, the need to remember
the purpose and usage of these entities is eliminated or at least significantly reduced.
The program can be understood as it is being read.

Anand offers the following guidelines when naming an identifier after its

functional description,

e Allidentifiers should be given a good functional description, if it is impossible
to do so the identifier’s purpose should be changed.

o Each identifier should perform only one specific action. If the functional
description is a compound sentence, the identifier is performing multiple
functions and should be changed.

e All relevant information concerning the identifier should be ‘predictable’
given its functional description, and the kind of identifier it is.

e A functional description should reflect what the identifier does, not how it
does it, or the context in which it is done.

e The functional description should be clear and concise without violating the
previous criteria.

The functional description of an identifier can be stated in terms of its pur-
pose within the program or its purpose within the problem domain. In lower level
subroutines that perform generic functions necessary in several different contexts,
the functional description can be stated in terms of what actions the code is accom-
plishing. Similarly, counter variables that are used within small loops can be named
‘I’ and ‘J’ because their purpose within the program is very clear independent of the
problem being solved. In higher level subroutines the functional description must be

thought of in terms of the problem domain. The actual code may perform several

23

seemingly unrelated tasks when taken in isolation but in terms of the problem do-

main only one specific action is being accomplished. Similarly a record structure may

hold several different pieces of information, its name should reflect an abstraction in

the problem domain.

2.4 Comments

Comments are sometimes considered unimportant by programmers for a

variety of reasons. The reasons given include:

Comments have no more significance than white space; they do not affect
the execution speed of a program or the accuracy of the results.

This program is a test program (or a prototype) and will be used only once
s0 comments are unnecessary.

Comments obscure the structure of the code making the program harder to
read.

The program is written in Ada (or Cobol or Pascal or ...) which is a self
documenting language so comments are unnecessary.

Comments can always be added later when and if there is time; the main
goal is to create a working program.

All these reasons contain just enough truth to convince the uninitiated. The following

counterarguments, also true, should be more convincing.

Programmers vastly overrate their ability to remember crucial details of a
program.

The time saved writing a program is often lost trying to understand it later
(or rewriting it because it couldn’t be understood).

What is clear to the author of a program may not be as easily understood
by the maintenance programmer.

e Programs have a tendency to remain in use longer than planned.
¢ Comments do not affect the meaning of a program, but they may aid the

reader to ascertain the intended meaning.
There will never be time enough to add comments later, so add them as the
program is being written.

Programmers that do consider comments desirable can often overuse or

abuse them. The code itself, sans comments, should be as self-documenting as

possible. When numerous comments are needed to explain a segment of the program

the code may be overly (and usually needlessly) complex; profuscly commenting the

24

program will not make bad code any better. Befcre a comment is written, the code
being documented should be examined to see if it can be rewritten using a clearer
or different solution; often (as was seen in section 2.3) changing the names of one or
more identifiers can improve readability enough to make a comment superfluous.

Every comment placed in the program should be there for a good reason
just as every line of code in the program should be there for a good reason. The
attention placed on comments should be the same as that placed on the code as
incorrect comments are potentially as damaging as incorrect code. This implies
that comments should be checked and tested for correctness when possible. Some
languages have assertion commands (ANSI C) which act as runtime comments and
are checked during the execution of the code. At the very least all comments should
be desk checked.

Comments aid readability only when they add information that cannot
easily be derived from the program text. Comments that paraphrase the source
code distract the reader from the code, and can often hide the underlying structure

of the code. Good usages of comments can include the following:

Summarize the purpose of functions, procedures and large blocks of code.
Highlight the logical content of a group of statements.

Emphasize a crucial step in the code.

Describe the precise meaning of an identifier or constant.

Document otherwise hidden dependencies in the code.

Inform the reader of design decisions and design rationale.

Document the date and reason particular modifications were made.
Clarify particularly obscure sequences of code.

® & &6 & o6 o o o

Also necessary for readability is the visual separation of comments from
code so that one can easily be distinguished from the other [79]. This has tradition-
ally been accomplished by placing comments in separate blocks above, or to the right
of, the code being documented. In both cases there should be sufficient white space
between the comments and the code to visually separate them. In cases where white

space is not used, comments that are sandwiched between lines of code or that are

25

aligned with the start of the next or previous line of code are especially distracting.
Ledgard suggests using two dashes, --, in addition to the normal start of comment
syntax, to clearly distinguish the comment from the code [44].

Sometimes during implementation and debugging, or when documenting
modifications to a program, sections of code are commented out. If each line is
commented out, individually, it is easy to determine what code will be executed and
what code will not. However, if blocks of code are commented out using start and
finish comment symbols like /* ... #/, or { ... }, it may be difficult determine
that code has been commented out; especially if the section of code is large.

If code is to be commented out for a long time, the writer of the code should
make a greater effort to distinguish the commented out code from code that will be
executed. Each line of code should have prepended to it some symbol marking it
as being commented out. Most programming editors can be enhanced with a macro

that will enable the easy placement and removal of these symbols.

2.5 0Odds and Ends

2.5.1 To default or not to default. Every programming language
allows defaults of one kind or another. Most defaults have to do with the properties
a variable can have or data conversion rules between different types. It would be
extremely unwieldy to program without these kinds of defaults. Fortran, for example,
needs five pieces of information to fully declare a numeric variable [72]. Picture
a programmer having to specify the following five attributes each time a numeric

variable is declared:

REAL, INTEGER, or COMPLEX
DIMENSIONed or not

COMMON or not

EQUIVALENCEd or not

PRECISION: single, DOUBLE or extended

26

Luckily, Fortran does not even allow the programmer to specify that some-
thing is not dimensioned, not common, not equivalenced, or single precision. Not
having the above properties and being single precision are the defaults; this makes
perfect sense as the majority of the variables declared would not need those proper-
ties. Not having to declare all those attributes saves the programmer time, reduces
possible errors on input and makes the code more concise and readable.

In some languages, though, the defaults are not as sound. PL/1 has a
multitude of data types and data type attributes; the rules in PL/1 for default type
declarations and default type conversions are truly strange. Figure 3.12 on page 44
lists several unintuitive default type conversions that PL/1 performs. Imagine if
the type conversions listed were what was actually wanted by the programmer; the
difficulty for someone reading such a program should be obvious.

PL/1 also has some irregular rules for defaulting variable attributes. In
PL/1 an undefined variable that starts with the letters ‘I’ through ‘N’ is defaulted
to have a “scale” of FIXED and a “base” of BINARY; all other undefined variables are
defaulted to have a “scale” of FLOAT and a “base” of DECIMAL. There are three ways
to make the variable ‘I’ have the attributes FLOAT and DECIMAL: Explicitly declare
‘I’ to have those attributes, declare ‘I’ to have a scale of FLOAT and the base will
default to DECIMAL, or declare ‘I’ to have a base of DECIMAL and the scale will default
to FLOAT. Notice that to change only one of the original default attributes of ‘I’ the
programmer must declare both attributes specifically. Taking advantage of strange,
unintuitive defaults makes reading and understanding the code much harder. |

Using the more intuitive defaults saves the programmer time and makes
the resulting code more concise with little loss in readability due to information not
being present for the reader. Using ill-conceived defaults hides the true meaning of
the program from the reader. Whether to use the defaults a given language provides

is a decision that must be made based on the reasonableness of the defaults. It should

27

be possible to construct a translator program, for languages that have particularly
troublesome defaults, which when given code as input returns a listing of all the
defaults used in the code. The places where defaults are especially unintuitive can
then be made more explicit by the programmer. In addition when using such a
system, it is possible that many subtle errors may be found in the code that are
caused by unusual default actions which would otherwise remain unfound, or be
found later at great cost.

2.5.2 Magic numbers. Magic numbers are numbers that appear in
the executable portions of the program text and have some influence on the compu-
tation. These numbers usually represent some logical limit, constant, or condition
such as the maximum size of an array, the number of characters allowed for an input
string, or an error condition like file not found. The numbers are ‘magical’ because
the code they are in continues to work even when the meaning behind the numbers
has been forgotten (What is this number for and how does it make the program
work? I don’t know, it’s magic!).

It has long been recognized that the use of magic numbers is a poor pro-
gramming habit. When a constant needs to be increased or decreased, it can be
difficult to find all occurrences of that number. The number may occur in several
different files, or may be one greater or smaller than normal because of the context in
which it is used. Often the same number may represent different constants causing
additional difficulties when trying to modify one constant and not the other. If any
number other than 0 or 1 appears in the body of the code it should be scrutinized
closely to see if it can be removed.

The most common solution to these problems (for those languages that
have global constants) is to use a named constant in place of the magic number.
Changes to the value of the named constant is then limited to a single place and the

meaning of the magic number is contained in its name. Some languages have special

28

features that eliminate the need for certain types of magic numbers. Languages that
allow the creation and use of enumeration types can use them in place of magic
numbers when the actual value of the number does not matter. For example, a
meaningful error such as FileNotFound can be reported using an enumerated value
instead of an error code number such as ‘36’. Ada has an apostrophe operator that
accesses attributes of a type and can eliminate another category of magic numbers.
For example, the commands ArrayType’first and ArrayType’last represent the
upper and lower bounds of a given array type; thus named constants for a array
boundaries need not be used in Ada.

A byproduct of the use of named constants, enumeration types, and type
attributes is the increased readability of the source text. A reader should never have
to unravel the meaning of a magic number. Using the above methods, the exact
value of the number is placed elsewhere while the meaning of the number, contained

in its name, remains part of the program text.

CHAFTER 3

PROGRAMMING LANGUAGE DESIGN

There does not now, nor will there ever, exist a programming language in
which it is the least bit hard to write bad programs. — Lawrence Flon

The readableness of a programming language or a program is often influ-
enced by personal bias. Is Cobol readable? Is Lisp or APL? Terseness should not
be associated with unreadableness just as verbosity should not be associated with
readableness. How readable the programs from a particular language are depends
upon who you ask and how long they have spent reading listings in that language. A
person who is familiar with programming, but unfamiliar with a particular language,
may be in a better position to judge.

Certain design guidelines and principles are universal and language design-
ers can use them to improve their language. The syntax of a language should be
suggestive of the semantics. Syntax features should aid in the recognition of basic
program concepts, not hinder the reader by obscuring the meaning. Similarly, the se-
mantics of a programming language should help aid the understanding of programs,
and not hinder it. Unfortunately the syntax and semantics of a language are often
looked upon as a convenient device to structure code for the translator to parse, and
not as a tool to aid in reading and understanding the code. This chapter examines
how the design of a programming language can influence how readable the programs

written in that language are.

30

3.1 Basic Language Tokens

The keywords and symbols of a language are the building blocks with which
programs are built; it is difficult to construct an understandable program with un-
comprehensible basic tokens. Because of this, and the fact that the syntax cannot
be changed later, the language designer must make a great effort to insure that the
keywords and symbols of a new programming language are clear and unambiguous.
The semantics of a construct, the context in which it is used, how often it will be
used, other keywords and symbols in the language, and even other programming
languages all affect how readable a particular keyword or symbol is.

3.1.1 Keywords. Many of the same criteria given earlier in section 2.3
for naming identifiers should be applied to naming the keywords of a language. Key-
words should not be abbreviations, or have abbreviativus. As an example, figure
3.1 contains a list of PL/1 keywords and their abbreviations as defined in the lan-
guage [72]. The two columns of words have deliberately been mixed up. It will
be difficult for someone unfamiliar with PL/1 to connect the parent words to their
abbreviations on their first try. Ihe choice of abbreviations used in the PL/1 lan-
guage follows no discernible pattern that would aid the reader in decoding them.
Two of the abbreviations, DEF and DEC, could match several diffcrent keywords. The
ability to abbreviate the keywords of a programming language is a useless feature
which hinders readability. In addition, seeing and using abbreviated keywords may
influence the programmer to use more abbreviations in her code as well.

Assembly languages are also notorious for having cryptic abbreviated com-
mand instructions. This is a byproduct of having a large number of similar instruc-
tions and historical precedence. Some abbreviations, such as using JMP instead of
JUMP and MOV instead of MOVE, are fairly benign abbreviations and casy to decode,
but it is difficult to justify the removal of just a single character. Many other lan-

guages abbreviate their keywords also. C saves three characters by using struct

31

OVERFLOW DEF
CHARACTER ATTN
DEFAULT CPLN
DECLARE OFL
COMPLEX DEC
DEFINED DFT
COMPLETION CPLX
ATTENTION DCL
DECIMAL CHAR

Figure 3.1: PL/1 reserved words and abbreviations (Not matched)

instead of structure, and saves two by using extern instead of external. Pascal
abbreviates the word ‘character’ as chr, an intrinsic function that returns a charac-
ter given an integer, and char, the character data type. In addition, Pascal has two
intrinsic subroutines, eoln and readln, where 1n decodes to line; what does the
math function 1n decode to?

Keywords, like identifiers, should be named after the abstraction they rep-
resent, and not its implementation. The Lisp commands car and cdr stand for
‘Contents of the Address part of Register number’ and ‘Contents of the Decrement
part of Register number’ respectively [46, pp. 175]. Not only are the commands
named by how tasks are being accomplished instead of what is being accomplished,
the command names are tied to a particular machine’s instruction set. Very few
people know the original meanings of car and cdr. The preferred names for these
commands, head and tail, describe the functionality better. The names for these
functions in Common Lisp, first and rest, are even more intuitive.

Using the reverse of a2 keyword as an additional keyword was a ‘clever’ idea
on the part of the Algol68 designers, but does nothing to enhance readability. Algol6S
has the following keyword pairs: if ... fi, do ... od, and case ... esac [67].
These are nonsensc words which have no meaning. How do the following sound:

for ... rof, while ... elihw, begin ... nigeb, function ... noitcnuf, and

32

procedure ... erudecorp? The ACM Sigplan journal had a series of articles and
letters to the editor in which the merit of reverse keywords were debated (27, 26, 35].
The consensus of these articles can be summed up by the commented program text
handed in by one of Knuth’s students: “esac; comment bletch tnemmoc;” [40].

A much clearer syntax that can be used in place of reversed keywords is
that used by Ada: if ... end if, loop ... end loop, and case ... end case.
The closing keywords are longer, but have meaning. Modula-2 took a step backward
by generalizing all the closing keywords into the single keyword end. This specific
generalization removes information that is helpful to the reader and offers only the
savings of not having to type in an additional two to four characters (six if you count
end record).

In many programming languages the keywords are not reserved and the
same keyword word can be used as an identifier as well. In a few languages textually
distinct classes of identifiers can also share the same word. These are useless features
that cannot be justified; of all the thousands of words possible, why decrease read-
ability by assigning two or three distinct meanings to the same word. As an extreme
example, the freedom to overload identifiers and keywords permits barbarisms such

as the one depicted in figure 3.2 {66, pp. 13].

if if = then DO 5 I6 = 1.34
then then = else; 14 FORMAT(I8) = I
else else = else; [END = K=I
PL/1 Fortran

Figure 3.2: Overloaded identifiers and keywords

3.1.2 Symbols. Symbols should be used in place of keywords only
when readability is enhanced. This occurs when the symbol is an intuitive match
for its meaning within the program or when the symbol is used so often that the

textual brevity of the symbol makes the code more readable than a longer, more

33

understandable keyword would. If either of the above conditions does not exist then
a keyword should be used instead.

Symbols have traditionally been used as mathematical functions, separa-
tors within statements, and statement terminators or separators; the use of symbols
within statements is covered in the next section. A symbol that represents a math-
ematical function is most readable when the symbol is in some way analogous to
that function. For example, the math functions “plus”, “minus”, and “less than”

are easily decoded from “+7, “

-7, and “<” since the relationships between the sym-
bols and the functions were learned by most people in grade school and have become
second nature to them. It is unfortunate that the computer keyboard and the ASCII
character set are derived ficin the old fashion typewriters as the usual symbols for
multiply and divide, “x” and “+”, are not available. Their ‘replacement’ symbols,
“*” and “/”, have become generally accepted though. One can argue that they are
better choices because “x” might easily be mistaken for the characters “X” or “x”,
and “/” is highly reminiscent of the horizontal bar in fractions like % (people often
write fractions using a “slash”, 1/2, also).

Because there is a general scarcity of available symbols many symbols are
overloaded and often two or more symbols are combined to represent new functions.
The equals sign, for example, is often used both for assignment and for testing
equality. Pascal and Ada use “=" for equality and “:=" for assignment while C uses
“==" and “=" respectively. In C where assignments can be included in expressions,
the similarity of the two forms often cause many errors which are not detectable by
the compiler. Better choices for an assignment symbol are “~", or “«<", had they
been available.

Some symbols, through repeated use in many programming languages, have

become all but synonymous with a specific operation. Whether or not these symbols

are the best ones to use for those operations is no Jonger an issue. If a new language

34

uses a different symbol for the same operation it runs the risk of decreasing read-
ability (and writability) by going against the de facto standard. The dot symbol, for
example, is used by many languages (Ada, C, Modula-2, Pascal) to signify a partic-
ular field within a record structure (Record. Field). Fortran 8X’s designers choose to
ignore ‘tradition’ and use the percent symbol, (Record’, Field). Their decision might
have been influenced by the fact that the dot symbol is already used in the logical
operators (.GT., .LT., .GE. ...) and overloading it might have caused readability
problems as well. Fortran 8x was also extended to allow programmers to use the
more traditional logical operators (>, <, >= ...) so the argument that readability
would have been decreased had the dot symbol been used is not as strong.

New languages should depart from existing languages if the new features
will improve the language (otherwise why design new languages). Herriot, in an
article titled “Towards the Ideal Programming Language”, argues that readability
would be enhanced if the “?s” operator or the “OF” operator were used instead of

the dot symbol [28]. Figure 3.3 compares the four different ‘field’ operators discussed

above.
Flight .DepartingTime.Hour Traditional
FlightYDepartingTime)Hour Fortran 8x
Flight’s DepartingTime’s Hour ’s operator
Hour OF DepartingTime OF Flight OF operator

Figure 3.3: Comparison of four different ‘field’ operators

The APL language is the ultimate symbol language. It was originally de-
signed to be a unifying mathematical notation, and was only implemented on a
computer as an afterthought [33]. APL is one of the few languages to free itself from

the confining ASCII character set, it uses almost 70 different symbols in addition

to the alphanumeric symbols. To complicate matters further, many of the symbols
represent two functions, a monadic and a dyadic. Taylor argues that APL is hard to
learn because mathematics is hard to learn and that the individual and not the lan-
guage is the reason people do not become APL literate [63]. If a person understands
the mathematics behind APL it should be easy for him to read and write code.

The problem with understanding APL is that associating the symbols with
the appropriate functions is difficult; many of the symbols and functions match each
other well, but many others do not. Perhaps if some of the lesser-used and some
of the less intuitive symbols were replaced with keyword commands the end result
would be more readable. For example, some languages such as C use the percent
symbol, “4”, as the modulus function, while others such as Ada have an intrinsic
keyword function defined.

When obscure keywords and symbols are combined with cryptic identifiers,
programs are even more difficult to comprehend. The arguments that other people
have learned the idioms of a language and that people who want to program in it
will continue to learn the language are not sufficient reasons for having produced
a poor language design. The cryptic command language of the UNIX operating
system is a prime example of this shortsighted mindset. At one time many people
argued against the use of decimal numbers in place of octal numbers as constants in

programs for similar reasons {5, pp. 129].

3.2 Statement Structure

A statement is the basic unit of information within a programming lan-
guage. Some statements are declarations, some are executed, and some contain
other statements within them. One can consider an entire subroutine to be the dec-
laration statement for that subroutine. One of the decisions that needs to be made

concerning statement syntax is how to distinguish when one statement is finished,

36

and the next statement starts; this is important to the compiler, the programmer
and the reader. Two of the most common methods of marking statements are the
statement terminator and the statement separator.

3.2.1 Statement terminators versus statement separators. A
statement terminator is a symbol which ends a statement. A statement separator
is a symbol which lies between two statements, similar to how a comma separates
the items in a list. Statements that end in a keyword should not have to require
an additional termination or separation symbol as the closing keyword can serve the
same function (PL/I choose to ignore this and requires many unnecessary termina-
tion symbols). Languages using either method of marking statements usually allow
multiple statements per line of text as well as multiple lines of text per statement.
By convention, statement terminators are placed at the end of a statement (or on a
line by themselves if a keyword) and statement separators are placed at the end of
the first of two statements. Because the two methods are so similar (they often use
the same symbol, “;7, as well), it is easy to confuse them.

While the rules for both methods are easy to grasp, programmers have a
much harder time programming with statement separators. In a study comparing
language design issues, statement separator compiler errors were shown to occur an
order of magnitude more frequently then statement terminator compiler errors [24].
Pascal uses statement separators; placing a semicolon at the end of a statement in
certain contexts will cause a syntax error. Modula-2 (which could have been called
Pascal-2) also uses statement separators, but fixes the problem above by allowing
statements to consist of no symbols at all. Thus statement separators can be placed
after every statement in Modula-2 just as if statement terminators were required. An
error will still occur, in both Pascal and Modula-2, if a statement with no separator

symbol following it is moved from a context where a separator symbol is not required

37

to one where it is. Thus statement terminators appear to be the better of the two
methods as they are always used in a context independent manner.

A third method of distinguishing statements, differing in philosophy than
the two methods seen so far uses no symbols to terminate or separate statements.
Statements are terminated implicitly by the end of the line. This method does not
allow for multiple statements per line or multiple-line statements unless specific sym-
bols for these constructs are used. For example, in Fortran 8x a semicolon is placed
between multiple statements on a line to act as a separator and an ampersand char-
acter, “&”, is placed at the end of each line being continued. It would be interesting
to compare this method and statement terminators to see which is the most readable.

3.2.2 Closing Keywords. Some statement constructs, like the if
and while statements in Pascal, have no closing keyword. This leads to several
problems when writing and reading programs using those statements. The first is
that a second statement cannot be added to the body of the construct by itself.
The addition of a second statement requires that both statements be surrounded
by a begin ... end block, as in figure 3.4. In an article that rationalizes many of
Modula’s design decisions, Wirth states that he choose to include closing keywords
to eliminate ever needing additional bracketing keywords when inserting a statement

into a program [76].

if <expression> then

. : begin
if <expression> then g
<statement>;
<statement>
<statement>
end
Figure 3.4: Begin ... end must be added with a second statement

A sccond problem caused by begin ... end pairs is that they tend to pro-
liferate in most programs. The begin ... end pairs act as syntactic ‘noise’; the

numerous occurrences of the keywords quickly become distracting and can obscure

38

the flow of control from the reader. Deciding upon useful, uniform indentation and
keyword placement conventions for the multitude of begin ... end pairs is also diffi-
cult. One style of programming espoused by Pascal programmers is to always include
the begin ... end pairs and comment the end keyword. This style of programming
simulates a closing keyword, and mitigates the unwieldiness of the begin ... end
pairs as well as providing additional helpful information for the reader. This style is

less helpful when the else clause is present, as in figure 3.5.

if <expression> then begin

<statement>;
if <expression> then begin <statement>
<statement> end {then}
end {if} else begin
<statement>
end {if}

Figure 3.5: Begin ... end pairs increase the syntactic ‘noise’

A third problem is illustrated by the difficulty beginning programmers have
in understanding why it is not legal to include multiple statements between the then
and else keywords without enclosing them in a block. When read, the program looks
correct to them, why does the compiler object? The problem is that without a closing
keyword the compiler, and the reader, can never be sure that an else will not occur
later in the program. Thus, until the end of the current block is reached it would be
unknown whether one statement, or all intervening statements, need to be executed

when the expression in the if statement is true.

if <expression> then if <expression> then
if <expression> then if <expression> then
<statement> <statement>
else else
<statement> <statement>

Figure 3.6: Dangling else problem

39

A fourth problem with not having a closing keyword is the dangling else
problem: If there are two nested if statements, and a single else clause, to which
if statement does the else clause belong? The version on the right in figure 3.6 is
indented correctly according to Pascal semantics; the else clause belongs to the clos-
est earlier unbound if statement which is at the same nested (block) level. However,
a reader spotting the version on the left would most likely take it at face value and
assume the else clause belongs to the wrong if statement. If the meaning implied
by the version on the left is what is really wanted, an additional begin ... end
block is needed even though it is enclosing only a single statement, as in figure 3.7.
if <expression> then begin

if <expression> then
<statement>
end {if}

else
<statement>

Figure 3.7: Begin ... end can sometimes be necessary around a single statement

A fifth problem with not using closing keywords is that it is easy to mis-
takenly execute a null statement. The two examples in figure 3.8 each have an extra
semicolon (enclosed in a box) which change the meaning of the code drastically. An
if statement with a null then clause and no else clause is meaningless. However,
a while statement with a null do clause makes perfect sense if the <expression>
portion of the while statement is a boolean function which if called enough times
will eventually become false. The textual smallness of the extra semicolons, and the
indentation of the code, obscures the true meaning of the code.

Lest you believe that all the benefits in readability lic on the side of having
closing keyword, examine figure 3.9. Not having a closing keyword makes the code
more concise when only a single statement follows the control construct. Attempts to

place a construct with a closing keyword all on the same line in these cases is not as

40

if <expression> thenE]

.) begin
while <expression> doE] & <statement>;
<statement> <statement>’
end; {if}

Figure 3.8: Null statement problem

appealing, “if <expression> then <statement>; end if”. The C programming
language uses brackets, {...} , to mark a compound statement. These symbols
are not as obtrusive as the begin ...end pairs; the “syntactic noise” of having a
multitude of brackets is considerably less. All the other problems with not having a

closing keyword still apply to the C syntax though.

if <expression> then <statement>; while <expression> do <statement>;
Versus
if <expression> then while <expression> do
<statement>; <statement>;
end if end while

Figure 3.9: Compactness of constructs that have no closing keyword

3.2.3 Intermediate keywords versus intermediate symbols. In-
termediate keywords and symbols are a necessary notation that separate the different
clauses within a statement. A language designer must choose whether to use key-
words or symbols within a statement. Symbols take up very little space, but must
be translated to have meaning. Keywords can be read as is, but occupy a larger
area then a symbol would. Studies have shown that a reader is guided through the
program by ‘beacons’ [12] in the language, readability is improved in most cases by

using a notation that will catch the readers eye.

41

Figure 3.10 compares the use of intermediate keywords and intermediate
symbols in two common control constructs, the if statement and the while state-
ment. The statements on the left (C syntax with capitalized keywords) use interme-
diate symbols to separate the <expression> clause from the <statement> clause.
The arguably more readable statements on the right use intermediate keywords which

eliminate the need for the parentheses [42].

IF (<expression>) IF <expression> THEN
<statement>; <stateme.t>;
WHILE (<expression>) WHILE <expression> DO
<statement>; <statement>;

Tigure 3.10: Intermediate keywords versus intermediate symbols

A more convincing example, figure 3.11, compares a case statement using
Modula-2 syntax and the author’s own semantically equivalent when statement. The
Modula-2 case statement uses a colon symbol to separate the item label from the
item statements, and uses a vertical bar symbol, “|”, to separate an item’s statements
from the next item. The when statement uses only keywords to separate the different
statement clauses. A reader’s eyes are immediately drawn to the capitalized keywords
in the when statement where as the colon symbols and vertical bar symbols in the

case statement are easily overlooked.

CASE <expression> OF WHEN <expression>
<item> : <statement>; IS <item> THEN <statement>;
<statement>] <statement>
<item> : <statement>]| IS <item> THEN <statement>
<item>, IS <item>,
<item> : <statement> <item> THEN <statement>
END CASE END WHEN

Figurc 3.11: Case statement with symbols versus when statement with keywords

42

3.3 Syntactic Subtleties

Every programming language has syntactic subtleties which cause even ex-
perienced programmers to make errors. These types of errors are syntactically cor-
rect, appear to accomplish what the programmer wanted, yet perform some other,
wrong action. Programming mistakes that result in compiler errors are annoying,
but relatively easy to find. Programming mistakes that appear to be correct, and
.uat are syntactically correct, can be very difficult for a reader to spot. To a language
compiler there are no language ambiguities; the compiler will compile error-free code,
correctly (according to its definition), the same way each time. To the reader, a par-
ticular piece of code may be ambiguous; the reader may believe the code will perform
a specific action while the compiler turns the code into something completely dif-
ferent. Often, a reader must be aware of these syntactic subtleties and be actively
looking for then in order to find them; the compiler usually offers no support.

The number and type of these errors are endless. It would be virtually
impossible to design a substantial language in which none of these types of eirors
could occur. The best a language designer can do is to be aware of the vypes of
syntactic subtleties that have caused errors in other languages and, if possible, avoid
them. While a complete list of the syntactic subtleties in existing languages is beyond
the scope of this paper, the following paragraphs attempt to categorize the types of
problems that can occur.

A common source fo: errors in many languages is when the addition or
deletion of a single character changes the meaning of the code but still results in
a well formed program. In languages where variables do not have to be explicitly
declared (Fortran for one), every misspelled identifier means a ncw variable will be
implicitly declared. Very few compilers or run time systems check to see whether a
variable has been assigned before being used or is assigned but ncver used; thercfore

the program will compile and run but will not give the results the programmer

43

wanted. In C, the statement “a / *b” means divide “a” by whatever “b” is pointing
to. The statement “a /*b” means “a” followed by a comment.

Two more examples of this type of error include the null statement problem
described in section 3.2.2 and depicted in figure 3.8 and the problem of the miss-
ing comment delimiter. If a closing comment delimiter is forgotten, the comment
statement extends itself through all intervening code until the next closing comment
delimiter is found. As was mentioned previously in section 2.4, the most readable
comment syntax is one that is terminated by the end of the line. Alternatively, the
bracketed comment syntax could be modified to allow for nested comments and the
compiler’s error checking extended to flag any unbalanced comment delimiters in the
same way that unbalanced parenthesis are flagged.

Another category of errors occurs when a programmer uses the freedom
of form within a language to obscure the true meaning of a statement and make a
different, wrong meaning appear to be correct. For example, most languages allow
the programmer to use any type of indentation, and any amount of white space
desired. The dangling else problem depicted in figure 3.7 is one case where improper
indentation deceives the reader into believing the wrong meaning. As was mentioned
in section 3.2.2, a partial solution to this problem would be for the if statement to
use a closing keyword; this would at least make the improper indentation more
obvious. A case where ill thought white space deceives the reader is depicted by the
ease with which mathematical expressions can be perverted. Does “47+38 * 22"
mean “(47 + 38) * 22” or “47 + (38 * 22)" 7 The lack of white space around
“47+38” deludes the reader into believing that the addition will take precedence over
the multiplication. In both the above examples the compiler (or some other language
preprocessing tool) could be extended to check for inconsistencies in formatting and

warn the programmer that the code is suspect.

41

Another common source for errors occurs when two distinct constructs that
are similar in form can be used in the same context. The similarity problem of the
assignment symbol, =, and the equality symbol, ==, in C described in section 3.1.2
is one example. Possible solutions include changing the symbols used in each case,
making them dissimilar; extending the compiler to offer a warning whenever an
assignment symbol occurs in an expression; or changing the language by making
assignment statements within expressions illegal. As an aside, many programming
shops do not allow their programmers to use assignment statements within expres-
sions, and many programmers have stopped using that feature on their own. The
problems still occur though as there is usually no compiler (or lint) support to help
them enforce these rules.

n*x .8 actually means n * .7875
(Best possible representation of .8 in four bits)

25 + 1/3 yields 5§.33333333333
(Operator precedence is strictly left to right)

BELS! does not equal . 1x*+1
(Exponentiation operator has many other weird properties as well)

DO I =1 TO 32/2 ;
<statements> is executed zero times
END; (Type conversion problem)

Figure 3.12: PL/1 subtleties which cause errors

Many times, the programming language itself contains syntax and seman-
tics which go against both traditional thinking and common sense. This type of
language subtlety will automatically cause many errors as the syntax and semantics
of the language combine to obscure the true meaning of the program from the reader.
PL/1, as demonstrated in figure 3.12, is probably the definitive language for these

types of errors. The first ‘bad’ example comes from the article “Language Features

45

that Aid Debugging” by Gimpel [25]; the rest of the examples come from the article
“Teaching the Fatal Disease™ by Holt [30]. There is no easy way to stop the reader
from misinterpreting these language constructs (or the programmer from misusing
them). The only sure solution is to change the definition of the language to get rid
of these inconsistencies.

Another category of syntactic subtleties can be caused by non-uniformity in
the programming language. One such problem occurred recently, 15 January 1990,
when AT&T experienced software problems which disrupted phone services across
the natior The errant code. written in C, contained a switch statement which
contained an if statement which contained a break statement [50]. The break
statement was meant for the if statement but “broke” the switch statement in-
stead. A break statement can only be used within an iteration construct (do, for,
and vhile) and a switch statement [38]. The programmer’s assumption that break
statements also worked within if statements, while erroneous, was a simple, natural
extension as other control statements can use it. If break statements (like continue
statements) had been allowed only within iteration constructs, and a different key-
word was used for terminating switch statements, the break statement would not
have appeared to be so universal a construct. A different and more general solution
would be to extend the syntax for the break statement to break construct, where
construct could be do, for, while, switch, or if.

Perhaps the most famous error caused by a syntactic subtlety was the
missing comma which (reportedly) caused America to lose its first space probe to
Venus [29]. Figure 3.13 depicts the wayward line of code as the programmer wrote
it, as the compiler interpreted it, and as the line should have been written. Two
syntactic subtleties of Fortran combined to cause this error and make it undetectable
to the reader: Fortran’s ignorance of blank characters, and the fact that identifiers

do not need do be declared in Fortran.

46

DO 17 I =1 10 DO17I = 110 DO 17 I = 1, 10
(As Written) (As Interpreted) (As Desired)

Figure 3.13: Syntactic subtlety in Fortran code

Most errors caused by syntactic subtleties in a language can be eliminated,
or at least substantially reduced, by the methods talked about above. Si :ply remov-
ing the offending ‘feature’ or modifying the language syntax to limit the occurrence
of the error is not possible for existing, established languages. Only future languages
may benefit by language designers taking those measures. Extending the compiler
to offer a warning when the spurious situation occurs is also a possible but highly
unlikely solution (unlikely because compilation speed and executable code efficiency
is usually the compiler writer’s main concern, not error diagnostics; that is what
debuggers are for). In an ideal programming language, easily made errors would
result in a syntactically incorrect program, and warnings would be offered by the

compiler if the meaning of the code is suspect.

3.4 Programming Language Abominations

Certain language features and constructs should not be used as the pro-
grams that result from using them are invariably an order of magnitude more diffi-
cult to read and understand. Banning certain constructs does not limit the number
of problems that can be computed. Banning these constructs only limits the way
they can be computed. But how things are computed does make a difference; some
methods are easier to read and comprehend then others. Programs written in lan-
guages without the features mentioned in this section will be much more readable
and understandable than programs which depend on those features.

The particular features being held up as ‘bad’ are actually less important
than the reasons for which they are being held up. Understanding these reasons can

help the languag' designer to avoid other similar language features and constructs

47

not mentioned here that have similar properties and/or drawbacks. If a construct is
fraught with these problems but must be included in the language then the language
designer should make as great an effort as possible to counter or minimize the effects
of the problems.

One of the greatest mistakes a language designer can make is to design a
feature whose only purpose is to save the programmer time. These features have a
tendency to become major drawbacks as they often eliminate redundant information
that is necessary for readability purposes or error checking by the compiler. For
example, implicit variable declarations, used in Fortran and PL/1, attempt to save
the programmer from having to declare the variables of his program. This small
savings in typing time does not out weigh the problems created when a variables
name is mispelt. Compilers and programming checking systems (lint) can help find
some of these mispelt identifiers by warning the programmer if a variable was not
assigned before it was referenced or was not referenced after it was assigned, but in
general the burden of these types of errors falls on the programmer. Programming is
inherently difficult as programs must be exactly correct and error free; features that
loosen programming requirements must be examined closely in case subtle problems
can result.

Following a thread of control through the program is one of the main ways
in which a reader can understand what a program is doing. Language features
that hinder the reader from following a thread of control are highly suspect. Using
variables in place of labels, as PL/1 does, is one such construct. Finding the label
that a GOTO[B construct jumps to is not very difficult when the label is explicit.
If a variable is used instead though, the value that variable currently holds must
be determined before the i .ader can discern where control passes to next. Using

a variable to store a labe!l allows a control decision to be made elsewhere in the

48

program than where the decision is implemented. This decreases the ‘locality’ of the
decision and increases the coupling between two otherwise disjoint pieces of code.

Some language features, while extremely powerful, are almost impossible
to use in a safe manner. The subtle nuances of the errors that can occur when using
such a feature are sometimes not worth the abilities conferred by the feature. An
example of this feature is the “by-name” parameter in Algol. It is impossible to
write a swap routine (a routine that when given two numbers swaps their values) if
the arguments are being passed in by-name [22]. Passing parameters by-name is an
extremely potent ability which can be helpful in solving many problems. Passing a
function to a procedure can solve that same class of problems in an arguably more
readable fashion, without the side effects which by-name parameters can have.

Constructs which act differently depending on the contexts in which they
are used are another source of programming problems. A reader of the program
cannot determine what the construct does independent of some outside influences.
The epitome of these type of constructs is the dynamic binding of variables that
Lisp allows. Other more mundane examples are the overloaded symbols which have
different meanings in different contexts.

Some languages attempt to be all things to all people, this leads to ex-
tremely large unwieldy languages. Any craftsman must be able to understand his
tools completely in order to use them effectively; this means that programming lan-
guages should for the most part be kept simple [29]. PL/1 supports an excessively
large number of data types each with an accompanying number of properties and
type conversion rules and operator rules. In early versions of PL/1 arithmetic could
be performed in pounds, shillings, and pence; in fact PL/1 finally eliminated sterling
fixed-point constants only after the British empire did [56].

It is difficult to classify a language feature as being so troublesome that

it should never be used in a programming language again. The examples given

49

previously are fairly safe to classify that way as none will probably ever be added to
a new language again, especially in the forms as they exist in the languages cited. If
a language feature is a true abomination it will disappear in time through natural
selection (or de-selection as the case may be). Again, the point of this section was
to categorize some of the problems caused by certain poor language features making
programming language users and designers aware of them. The purpose was not to
start a ‘witch hunt’ or continue the “<Insert Programming Language Feature here>

Considered Harmful” thread of dialogue.

CHAPTER 4
PROGRAM PRESENTATION
You can’t make a silk purse out of a sow’s ear —Jonathon Swift

Programs typically are typed in as ASCII text, and the same text that is
compiled and executed is read via a simple text editor or printed out and read as is.
This does not have to be the norm. What if the computer itself were able to improve
the “style” of the program and make it easier to read? What if other appearance
aspects could be changed, or the code syntax modified for the better, or additional
information added to supplement the code? Program presentation systems do just
that. They modify the existing program in ways that make the code easier to read
and the true meaning of the program clearer. The output of a program presentation

system is meant specifically for a human reader.

4.1 Reformatting the Code

This aspect of improving the program presentation parallels the section ti-
tled “Formatting the Code” in chapter 2. The changes that are made to the code
of a program are those that are allowed under the syntax rules of the programming
language. Any of the formatting changes the programmer can make a reformatting
program can make, and the output will still be compilable (unlike other presenta-
tion methods covered in succeeding sections which either change the syntax of the
language or turn the program into a typeset document).

Program presentation systems which (for the most part) reformat program

code according to some indentation and style standard are collectively known as

51

prettyprinters. Most of the benefits associated with reformatting programs for read-
ability can be realized by these systems. In fact, in some ways reformatting programs
surpass their human counterparts as prettyprinters can detect logic and syntax errors
by flagging abnormalities [16].

One of the difficulties with implementing a prettyprinter is that determining
the most readable format for a program, as was discussed in section 2.2, is not
necessarily simple. There are many specific factors of the code being formatted that
prettyprinters must take into consideration. For example, if code is indented too far
to the right, longer lines may need to be split into two or more lines. A prettyprinter
must decide if a line should be split or if the indentation scheme should be changed
to make the line fit. If a statement is to be split, where should the break be made?
How is the back half of the statement aligned beneath the start of the statement?
Where should comments be moved to if they no longer fit on an indented line? When
should white space be introduced into the middle of statements to make them more
readable (figure 2.3b and figure 2.3c on page 12). More sophisticated prettyprinters
need to make all the above decisions and more. Quite a few prettyprinters opt for
a standard formatting scheme for a given piece of code or language construct rather
then trying to determine the most readable one. This is not as bad as it seems as
standardization has its own benefits in terms of readability.

Research is still being done on the best ways to format code. For example,
Oman and Cook favor horizontal spacing over vertical spacing. Their program pre-
sentation software will modify the “strung out” code depicted in figure 4.1a to that
depicted in figure 4.1b [53]. The traditional 80 column wide screen and printed listing
made this kind of formatting unwieldy in the past due to the length of <statement>'s.
This type of formatting is becoming more feasible now as the 80 character line length

limit is rarely a programming language restriction anymore. Also printers and dis-

switch (<expression>) {
case <valuel>:
<statement>;
break;
case <value2>:
<statement>;
break;
case <value3>:
<statement>;
<statement>;
break;
case <value4>:
<statement>;
if (<expression>)
<statement>;
else
<statement>;
break;

Figure 4.1a, Vertical Spacing

switch (<expressiond>) {

case <valueil>: <statement>; break;
case <value2>: <statement>; break;
case <valued>: <{statement>;
<statement>; break;
case <value4>: <statement>;
if (<expression>) <statement>;
else <statement>;
break;

Figure 4.1b, Horizontal Spacing

Figure 4.1: Comparison of vertical and horizontal spacing

53

play terminals have improved enough to handle more than 80 characters per line
with limited loss of resolution.

The furor around prettyprinting systems has died down since their heyday
in the late seventies and early eighties and only a few articles on these systems still
appear [9, 36]. For the most part, prettyprinters were very simple programs and
the differences between a programmer-formatted piece of code and a prettyprinter-
formatted piece of code was not that great. Programmers have realized the benefits
of indenting their own code. They can program faster and are much more efficient
if they indent the code as they write it; seeing the structure of the code as they
write it increases their understanding of the program and helps to reduces errors.
Also, many program editors can aid the programmer in creating indented programs
by anticipating the desired level of indentation based on the lines of code typed in

previously and the syntax of the programming language.

4.2 Graphic Design

This approach heightens readability by using graphic design principles to
distinguish and differentiate important language constructs, to make specific iden-
tifier classes visually explicit, and to lay out more appealing program listings. The
text of the program remains the same, only the appearance and positioning of the
text changes. Multiple type fonts, different size fonts, grey scaled tints, rules (lines
which can act as demarcations), and variable spatial location of program elements
on the page are some of the tools used to accomplish the above tasks [6].

The use of graphic design principles in program presentation is closely re-
lated to that of program reformatting. Both are concerned with the appearance
of the code and providing easily recognizable visual clues to enable the meaning of

the program to be discerned easier. While the output of a program reformatter can

54

still be compiled and run, the output from the graphic design approach changes a
program into a typeset document.

Distinguishing different programming language constructs can be accom-
plished by using different type and size fonts. For example, keywords can be bolded,
subroutine names can be written using a larger font, and character string data can
be written using italics, figure 4.2a. Alternatively keywords can be italicized, sub-
routines names can be bolded, and character string data written using a smaller
typewriter font, figure 4.2b. Many other combinations could be used as well. Using
these different fonts for different language constructs provides an additional visual
clue to the reader that makes it readily apparent which language construct a given
word belongs in.

This is similar to, but on a much grander scale than, the notion that using
uppercase characters for keywords and lowercase letters for identifier names dis-
tinguishes those two language constructs. The type and size fonts appropriate for
distinguizhive 2 given programming language construct depends on how important
it is to emphasize the construct or to differentiate the construct from all the others.
The only sure rule is that too many sizes and styles of fonts in use at the same time
will overload the reader with information and cause confusion. One must also be
careful that the typeset documents do not corrupt the indentation and alignment of
the code due to the varying sizes of the fonts.

Baecker, in his program visualization system for the C language, uses a
grey scaled tint to highlight stand alone comments. Comments that originally were
on the same line as code are moved to the left margin of the page and written in a
smaller font [6]. These two modifications visually separate the comments from the
program more effectively than any amount of normal white space could. Baecker also

uses rules to separate function definitions from function argument declarations and

float AbsoluteValue(x)
float x;

{ if (x < 0) return(-x);
return(x);}

float SquareRoot (x)
float x;
{ float Guess,Accuracy;

Accuracy = 0.00001%;
if (x < 0)
{ printf("SquareRoot cannot take a negative argument") ;
return (-1.0);}

while (AbsoluteValue (Guess * Guess - x) >= Accuracy)
Guess = (x / Guess + Guess) / 2.0;
return(Guess) ;}

Figure 4.2a, bolded keywords, large function names,
and italicized character string data

float AbsoluteValue(x)
floai x;

{ if (x < 0) return(-x);
return(x) ;}

float SquareRoot (x)
float x;
{ float Guess,Accuracy;

Accuracy = 0.00001;
if (x < 0)
{ printf("SquareRoot cannot take a negative argument") ;
return (-1.0);}

while (AbsoluteValue (Guess * Guess - x) >= Accuracy)
Guess = (x / Guess + Guess) / 2.0;
return(Guess) ; }

Figure 4.2b, italicized keywords, bolded function names,
and small smaller typewriter style character string data

Figure 4.2: Using different sizes and styles of fonts to accentuate constructs

56

function argument declarations from local variable declarations. This also clearly de-
lineates one set of language constructs from another. The previous citation contains
several excellent before and after pictures of Baecker’s system in use; any attempt
to reproduce them here would not do them justice.

Graphic design principles have been used mainly to vivify printed listings.
There are a few program editors which use bolding and/or color to distinguish lan-
guage constructs, usually keywords from identifiers, but little exists that approaches
the sophistication of the program visualization systems described above. As bit-
mapped graphics terminals and windowing environments become the norm perhaps
other graphic design elements will slip their way into program editors and program-

ming environments as well.

4.3 Program Transformations

A program transformation is one which changes the actual text of the pro-
gram. The change could be made according to the syntax rules of the language such
as making default type conversions explicit, or the change could involve transforming
the syntax of the program into a more readable (but not compilable) form. Both
types of transformations preserve the original meaning of the program and hopefully
make it casier for the reader to discern that meaning. The end result of a program
transformation is that the text of the program is changed, hopefully for the better,
making the true meaning of the program easier to discern when read.

Several trivial examples of program transformation are in wide use. For
example, the pointer operator in Pascal is entered at the terminal as the caret sym-
bol, “~”. When Pascal programs are published, however, the pointer operator is
often printed as the up arrow symbol, “1”. Another example in common use is to

”»

replace the assignment symbol, “="or “:=”, with the left arrow symbol, “"

2l

, to

avoid misinterpreting it with the equality symbol, “=" or “==". The syntax of a

57

programming language is locked in place by the language’s definition; frequently it
is constrained by the ASCII character set as well. This should not stop program
presentation software from offering a different, more readable syntax.

Program transformations can be very successful for creating readable math-
ematical equations. In Fortran the raise-to-a-power operator is represented by two
adjacent asterisks. Which is the more readable representation, x ** (y + q) or
¥t With a sufficiently powerful transformation system the unintuitive assign-
ment statement in figure 4.3 becomes the easily recognizable quadratic roots equa-

tion.

x = (-b + sqrt(bxb - 4*axc)) / 2%a;

r= —=b+v/b2—4xax*c

2+a

Figure 4.3: Assignment statement versus mathematical equation

Many options are available once program transformations are used. Unin-
tuitive keywords and symbols can be exchanged for more suitable ones. Intermediate
symbols can be replaced with intermediate keywords. The entire character of the
language can be changed. Baecker choose to remove all bracketing pairs, { ... },
in his enhanced C code and let indentation alone identify which statements belong
to a control structure [6] (Bhujade’s visual blocks, mentioned on page 11, have this
property as well).

There is a danger in making too many program transformations especially
of the kind described in the last paragraph. If too much of the syntax of the code
is changed the original code and the transformed code become only tenuously con-
nected. This may be fine in cases where the reader is unfamiliar with, or does not
care what, the base programming language is. A maintenance programmer, how-

ever, would become very frustrated trying to maintain a program from listings that

correspond only loosely to the text he is editing.

58

4.4 Additional Information

Part of the problem with trying to read and understand programs is that
the program is usually the sole source of information about itself. All the information
necessary to understand the program may be contained in the program itself but it
is difficult for a reader to extract it. Questions like “Where is this global variable
modified?” and “Where is this function used?” are hard for a reader to answer
without the use of searching tools (grep) or cross reference lists and indices for
the program. Much can be done in terms of mechanically scanning the code and
supplying the reader with various access paths to the code as well as other helpful
information.

Oman and Cook have experimented with supplying additional access paths
to C code [53]. Their software generates a table of contents which lists all the source
code files making up the program, the contents of those files by subroutine name, and
the page number those subroutines are printed on. In addition an index lists all the
subroutine names in alphabetical order, the page number on which the subroutine
can be found, and the other subroutines that the subroutine calls and is called by.
Additional types of information could have been added to the index as well; for
example the names and types of the arguments to the subroutine and whether any
global variables were used in the subroutine. Another language may have different
information that could be placed in an index. Extracting all this information from
the code and supplying it to the reader in a concise form is, for the most part, very
easy for a program to do. And yet few of these types of systems exist; many are
created ‘in house’ by the programmers themselves.

In some programming environments a source code analyzer is integrated
with a program editor to provide these indices and cross references on-line. The

reader can jump from subroutine to subroutine following a thread of execution.

59

moving into and out of various source code files seamlessly. All references and mod-
ifications of a global (or local) variable can be listed on the screen and each place
where it is used or modified can be edited by selecting the appropriate line. In ad-
dition, a programmer can mark several locations in the code and skip from one to
the other when needed; this is the electronic equivalent of holding a finger in several
places in the listing and flipping from one to the other.

Having these additional access paths, either on-line or printed, help the
reader to traverse the code easier. A reader will usually scan a program from top
to bottom (front to back if a printed listing) or trace one or more execution paths
through the code. Scrolling the program in a text editor or paging through a listing
accomplishes the former way of reading the program. Until recently, though, there
have been few tools or aids available for accomplishing the latter, more useful reling
task.

When looking at any given page or screen of code in isolation, little is
known about its relationship with the rest of the program. Access paths on a local
scale can be helpful in determining a multitude of relationships. A reader should
know the file name, module name, and subroutine name in which the viewed code
resides. If one or more control structures span the page/screen break, the text on the
next page should remind the reader what is being continued. Clifton, and separately
Ramsdell, proposed using “connector lines” to connect the starting and ending parts
of a control structure [15, 59]. This made matching the end of a control structure
with the corresponding beginning trivial over long distances. Baecker’s visualization
program lists at the top of the page the control structures that are being continued.
For example, if an if statement nested within a while statement continucs to a

”»

second page, the text “while... if...” appcars at the top of the second page [6].

An additional bit of information which could be useful to the reader is to list the

60

global variables that are referenced or modified on a particular page at the bottom
of that page.

The ideas suggested above are just some of the ways in whih information
can be extracted from the program and presented to the reader. Different program-
ming languages place different burdens on the reader. The information that can be

extracted and presented to the reader may be different based on these burdens.

4.5 Literate Programming

“Literate programming” is the name given by Knuth to a generic program-
ming language and documentation system that encourages and facilitates the concept
that a program is a work of literature {41, pp. 97]. This approach is fundamentally
different as compared to the other program presentation methods discussed so far,
and yet, to a degree, includes all the other methods within it. Instead of starting
with a program and transforming it into a document, literate programming starts
with something that is neither, yet can be translated into both.

Knuth writes that a “practitioner of literate programming can be regarded
as an essayist whose main concern is with exposition and excellence of style” [41].
The goal of literate programming is to write a program fit for human consumption
that concentrates on explaining to a human reader how the program works yet can be
compiled and executed by the computer as well. The ‘literal’ programmer becomes
an author, expounding upon the code being written.

Knuth’s implementation of literate programming is called Web, and has
two translators, Tangle and Weave. The Web language combines the features of two
other languages, TEX and Pascal, as well as a macro processor. Tangle takes a .web
file as input and produces the Pascal code of the program as output. Weave takes
the same .web file as input and produces a formatted Tp:X document as output.

In principal any text processing/programming language combination could be used

61

as the base languages for Web. Other literate programming systems have been
developed around C and troff, and Fortran 8x and TgX [64, 4].

Programmers need not learn a new language in order to use the literate
programming paradigm. Ramsey created a table-driven literate programming system
called Spider which can convert virtually any programming language into a literate
programming system [60]. Programming languages which Spider has been used
with so far include Ada, Awk, C, Fortran, Modula-2 and others. Programmers
can continue programming in the languages they are most familiar with. In some
literate programming systems no additional information needs to be added to the
original code for it to be translated by the Web system [64]. This allows programmers
to gradually use and become familiar with the features of the literate programming
system.

Literate programming offers several additional benefits to the programmer
and reader of the program besides the obvious documentation advantages. The
programmer is able to to write programs as a collection of well documented code
sections in whatever order is best for human comprehension. The rigid structure
imposed by most programming languages need not be followed. If a new variable
or function is needed, it can be declared at the spot it is used, thus improving the
locality of the program elements. The program can be read in the order in which it
was written, and not the order imposed by the base programming language. When a
program is coded in a ‘normal’ language, the programmer continually traverses the
text file adding a declaration in one place, creating a new function in another, and so
on. In literate programming the code can be written in a “stream-of-consciousness”
order with program elements appearing when needed. The connections between
different program sections resemble a web as each may be related to several others

in fairly obvious ways.

62

The web of relationships between program segments has other benefits as
well. For example, often a simple one or two line subroutine grows to twenty lines
in length because of the need for error handling. In normal programming languages,
the subroutine appears to be an error handling routine rather than its true purpose.
Many times a programmer will subconsciously reduce or eliminate necessary error
checks because the additional code obscures the true meaning of the function. In
literate programming, however, the error portions of the code can be abstracted away
until a later time in favor of writing the real purpose of the function. Once that is
accomplished, the programmer can concentrate on writing the best error handling
code possible as that is the purpose of that particular code section. The benefits to
the reader are obvious, the error code is spatially removed from the function code
proper and need not be read unless the situation warrants it.

The output from the Web system that is meant for human consumption
is completely typeset. All of the program presentation methods discussed in this
chapter so far can be put to use in this typeset document, including extensive indexes
and cross reference lists. The program could be sent to a journal and published as
is without the usual cutting and rewriting and documenting of code that most be
done in other language systems.

There are several problems with literate programming though, none of
which appear to be insurmountable. Thimbleby reports tat “The most subtle disad-
vantage of {Web] complements one major advantage: because it motivates program-
mers to document their programs, programmers will be more egoistic about their
programs. This will result in all the problems which Weinberg illuminates so well”
[64]. In fact, Knuth himself professed to being egoistic about his Web programs [1,
pp- 109]. Weinberg details the problems associated with egoistic programmers and
the need for egoless programming in his book The Psychology of Computcr Program-

ming [69)].

63

The other problems Thimbleby found had more to do with the state of his
Web implementation as opposed to any fundamental fault with literate programming
itself. For example, the line numbers the compiler reported as having had errors had
to be translated to the equivalent line numbers in the original .web file. Fortunately
the compiler Thimbleby used allowed directives to be inserted that ensured the num-
bers reported reflected the original source. In general though the line number mey
not be as easy to solve without fully integrating the Web programming environment
with the various compilers and translators. Also because of the lack of integration,
the programmer has to contend with Tangle errors, Weave errors, base programming
language errors and document formatting language errors (as well as algorithmic er-
rors). Another problem was that small-scale debugging became harder because the
program was spread out over a larger area. Thimbleby conjectures that a smarter
editor, integrated in the Web way of doing things, would reduce that problem as
well.

Many of the problems associated with literate programming are due to the
literate programming system being a shell around an existing programming lan-
guage. As was stated earlier, there is a great advantage in not having to learn a new
programming language in order to become a literate programmer. However, there
are problems associated with this approach as well. Unfortunately many program-
ming languages, when placed into the literate programming paradigm, develop slight
quirks that are awkward to program around. These quirks need not be there had
the programming language been designed for the literate programming paradigm.

Literate programming has had very little impact on the programming pro-
fession to date despite the number of articles published about it. The journal Com-
munications of the ACM occasionally has had a column concerning literate pro-
gramming (July 1987, December 1987, December 1988, June 1989, September 1989,

March 1990) but the column was discontinued. Interestingly, the trade magazine

64

Computer Language recently published an article on literate C++ [32]. Sewell pub-
lished Weaving a Language-Independent Web which contains the source code (in
Web) for the Tangle and Weave translators and a small tuioriai on their use [62].
This above that literate programming is escaping the research world, but as yet
there are no commercial systems available. It often takes fifteen to twenty years for
any new technology to become accepted; look at object oriented programming for
example. Whether literate programming becomes widely accepted in the future is

yet to be seen.

CHAPTER 5
CONCLUSIONS

The following high-level conclusions are drawn from themes that are present

through out the body of this thesis.

5.1 Readable Programs are Important

The idea that it is enough that a program be correct is untenable. The
sheer number of times any given piece of code must be read and understood dur-
ing its lifetime and the necessity to maintain the code should discount that belief
immediately. A program must be interpreted each time it is read. A compiler will
interpret the same code the same way each time. The likelihood that a person will
interpret the same code the same way each time, let alone the same way the com-
piler does, depends on how readable the code is and how close the intuitive meaning
matches the real meaning.

For all the benefits of readable programs to be realized, programmers must
make code readable as they make it correct. It is easier to notice errors and ensure
that the program will work correctly if this is done. Making a program more readable
effectively decreases its complexity as well. The structure of the program is more
apparent, relationships between different parts of the program are easily discerned,
and the mental strain necessary for understanding the program is lessened. The
time it takes to comprehend the code, and the program as a whole, is also reduced

considerably.

66

5.2 Programming for Readability is Not a Simple Task

Programming clearly and concisely is achievable, but it is not easy. Just as
good writing requires care, attention to detail, and practice, so does good program-
ming. There are few magic formulas proffered by this thesis for writing readable
code, designing programming languages that make writing readable code easier, and
using presentation techniques that make the code more readable. Attempts to follow
the suggestions put forth without knowing the reasoning behind them may do more
harm than good.

Making code readable requires that a programmer understand and merge
both aesthetics and functionality. The intention behind making a program read-
able is to make the program easier to understand and to ensure its meaning when
read and meaning when executed are the same. A programmers style, the program-
ming language used, and the way the program is presented all affect this goal. The
readability tradeoffs of one programming style and language design over another are
complex to determine and can vary greatly based on the interaction between the
code under consideration and the particular programming style and programming
language that are being used. The most readable design for a language construct
depends on the way that construct will be used most often. The most readable pro-
gramming style and program presentation method depends on the language being
used and the particular code being improved. The bulk of this thesis discusses these
tradeoffs and intricacies and attempts to shed some light on the subject.

One example that illustrates the complexity of programming for readability
is choosing the name for an identifier. Selecting the most readable name for an
identifier is very important, but many factors need to be examined and weighed
before making a decision. Identifier names should be long enough to be meaningful
but short enough to not be unwieldy. The midpoint where the balancing tradeoffs

in readability offset each other changes based on how often, where, and in what

67

context the identifier in question will be used. The name should reflect the identifiers
purpose in terms of the problem domain when possible or in terms of its use within
the program when the former is not possible. The name should also make sense when
read in the expressions and statements where it is used and thereby eliminate the
need for explanatory comments. Consider the number of identifiers in the average
program that must be given names and remember that naming identifiers is only

one small aspect of creating readable programs.

5.3 Programming Languages Can be Designed to be More Readable

Few programming languages were designed with code readability and clarity
in mind. Cobol and Ada are two of the best known attempts and in both cases many
other considerations took higher precedence. The tools one uses directly influence
the shape and form of the solution; special care needs to be taken to ensure that
programming languages will facilitate creating readable code. It is much easier to
create a readable program if the underlying structure of the code is readable.

Many language constructs can be improved just by changing their syntax,
making them more readable, and less prone to errors of interpretation. In these cases
the power and usefulness of the construct need not be changed, only its appearance.
Syntactic subtleties of the language can often be removed by modifying the syntax
as well. If changing the syntax is no longer an option, compiler warnings should b.
added, as part of the language definition, to aid the detection and elimination of
these possible errors.

Particularly powerful language constructs that are prone to being abused
should be examined closely. It is possible that the syntax and semantics of the con-
struct can be changed to eliminate or at least limit the potential abuses. Designing
the language construct so that it can be used only in the cases where it makes good

sensc i rarcly ~n option, this can overly restrict the usefulness of the construct even

68

when it is possible. Changing the language construct to require the programmer to
specify additional information that would otherwise not be necessary can make the
construct’s purpose clearer to the reader. Some powerful language constructs, such
as global variables and the GOTO statement, should be used rarely and only for very
specific purposes. Making constructs such as these difficult or unwieldy to use can
help limit the number of times that they are used to those that the programmer
deems are necessary in spite of the additional inconvenience.

Much thought goes into designing programming languages with new and
more powerful features. Considerably less thought is spent on making those features
readable and easy to use without causing errors. How many times is one particular
piece of code compiled and run and re-compiled and tested and compiled again
and debugged and so on? Designing languages that are more readable, have fewer
syntactic subtleties, and are easier to use correctly can save an enormous amount

time and energy in the long run.

5.4 Programming Languages Should have Automated Proofreaders

It is well known that the earlier an error is caught, the easier it will be to fix.
Finding errors and correcting them statically (normally thought of as compile time)
is much more efficient than finding them when running the program. Unfortunately
compilers have traditionally given poor error diagnostics. Problems that could be
found at compile time typically are not because the compiler is only concerned with
turning away code that is not correct syntactically. Often the errors the compiler
does report are phrased in terms of its problem rather than the programmers prob-
lem; reporting the error “Symbol table exceeded” instead of “Too many identifiers
declared” is one such example.

Many of the ‘errors’ that trip up both beginning and experienced program-

mers alike are not treated as errors by the compiler as they are syntactically correct

69

by the rules of the programming language. For example, quite a few of the errors
the UNIX “lint” program finds and reports are legal within the rules of the C pro-
gramming language. More times than not the advice given by lint is taken because,
syntactically correct or not, the code will not do what the programmer wanted.

A proofreading system could combine the best aspects of a program style
system [43] and a program critic system (lint). A proofreader program could find all
the syntactic errors, errors similar to those caught by lint, errors that take the form
of syntactic subtleties similar to those discussed in section 3.3, and errors related
to some some programming style issue. The proofreader’s sole task is to warn the
programmer of as many possible errors, inconsistencies, spurious code conditions,
and readability problems as possible. Programmers can of course choose to ignore
any advice given by such a system, but at least they will be made aware of situations
where possible problems exist. By heeding the warnings of the proofreader system
though, the resulting program can be made more readable and many errors can be

caught and eliminated sooner.

5.5 Standard Disclaimer

Just as beauty is in the eye of the beholder, how readable something is
depends on the outlook of the person doing the reading. Hopefully this thesis has
not been biased too much towards the authors outlook. Writing this thesis has
made me think more about the way I program and the way I look at programming
languages and programming environments. If reading this thesis does the same for

you then all has not been in vain.

BIBLIOGRAPHY

[1] American National Standards Institute, Washington, D.C.: U.S. Department of
Defense. Reference Manual for the Ada Programming Language, 1983.
ANSI/MIL-STD-1815A.

[2] American National Standards Institute, Washington, D.C.: U.S. Department of
Defense. Fortran X3.9-198x, January 1986. X3J3/S8.

[3] N. Anand. Clarify function! ACM Sigplan Notices, 23(6):69-79, June 1988.

[4] Adrian Avenarius and Siegfried Opperman. Fweb: A literate programming
system for Fortran 8x. ACM Sigplan Notices, 25(1):52-58, 1990.

[5] John Backus. Programming in America in the 1950’s — Some personal impres-
sions. In N. Metropolis, J. Howlett, and Gian-Carlo Rota, editors, A IIistory
of Computing in the Twentieth Century, pages 125-135. Academic Press,
1980.

(6] Ronald Baecker. Enhancing program readability and comprehensibility with
tools for program visualization. In Proceedings of the 10th International
Conference on Software Engineering, pages 356-366, April 1988.

[7] Geneva G. Belford and Chung Laung Liu. Pascal. McGraw-Hill Inc., 1984.

[8] Moreshwar R. Bhujade. Visual specification of blocks in programming lan-
guages. ACM Sigplan Notices, 22(8):24-26, August 1987.

[9] G. Blaschek and J. Sametinger. User-adaptable prettyprinting. Journal of
Software Practice and Experience, 19(7):697-702, 1989.

[10] Marian Kruse Breland and Keller Breland. Legibility of newspaper headlines
printed in capitals and in lower case. Journal of Applied Psychology,
28:117-120, April 1944.

{11} Frederick P. Brooks, Jr. The Mythical Man-Month. Addison Wesely Pub-
lishing Company, January 1982.

[12] R. Brooks. Towards a theory of the comprehension of computer programs. In-
ternational Journal of Man-Machine Studies, 1§(6):543-554, June 1983.

[13] Breck Carter. On choosing identifiers. ACM Sigplan Notices, 17(5):51-59,
May 1982.

71

[14] R.Lawerence Clark. A linguistic contribution to goto-less programming. Data-
mation, 19(2):62-63, December 1973.

[15] Mitchell H. Clifton. A technique for making structured programs more readable.
ACM Sigplan Notices, 13(4):58-63, April 1978.

116] Kenneth Conrow and Ronald G. Smith. Neater2: A PL/1 source statement re-
formatter. Communications of the ACM, 13(11):669-675, November 1970.

[17] Tom DeMarco and Tim Lister. Software development: State of the art vs. state
of the practice. In Proceedings of the 11th International Conference on
Software Engineering, pages 271-275, 1989.

(18] Edsger W. Dijkstra. The humble programmer. Communications of the
ACM, 15(10):859-866, 1972.

[19] S. L. Ehrenreich. Computer abbreviations: Evidence and synthesis. Human
Factors, 27(2):143-155, 1985.

[20] Adin Falkoff. The APL character set: Dual keyboards are better. APL Quote
Quad, 20(2):28-32, December 1989.

[21] R. K. Fjeldstad and W. T. Hamlen. Applications program maintenance study:
Report to our respondents. In G. Parikh and N. Zvegintzov, editors, Tutorial
on Software Maintenance, pages 13-27. IEEE/CS Press, Silver Spring, Md.,
1983.

[22] A. C. Fleck. On the imposibility of content exchange through the By-Name pa-
rameter transmission mechanism. ACM Sigplan Notices, 11(11), November
1976.

(23] Lawercnce Flon. On research in structured programmining. ACM Sigplan
Notices, 10(10):16-17, October 1975.

[24] J. D. Gannon and J. J. Horning. The impact of language design on the produc-
tion of reliable software. ACM Sigplan Notices, 10(6):10-22, June 1975.

[25] James Gimpel. Language features that aid debugging. Computer Language,
5(4):41-45, April 1988.

[26] Richard Hamlet. A further note on symmetric keyword pairs. ACM Sigplan
Notices, 15(6):7, June 1980.

[27] David Harel. do considered od odder than do considered ob. ACM Sigplan
Notices, 15(4):75, April 1980.

~1
[Se]

(28] Robert G. Herriot. Towards the ideal programming language. ACM Sigplan
Notices, 12(3):36-62, March 1977.

(29] C. A. R. Hoare. Hints on programming language design. Computer Systems
Reliability, 20:503-534, 1974.

{30] Richard C. Holt. Teaching the fatal disease (or) Introductory computer pro-
gramming using PL/1. Sigplan Notices, 9(5):8-23, May 1973.

[31] J. N. P. Hume and R. C. Holt. Fortran 77 for Scientists and Engineers.
Reston Publishing Company, Inc., Reston VA, 1985.

[32] Marco S. Hyman. Literate c++. Computer Language, 7(7):67-79, July 1990.
[33] K. E. Iverson. A Programming Language. Wiley, New York, 1963.

[34] Kathleen Jensen and Niklaus Wirth. Pascal: User Manual and Report.
Springer-Verlag, 1974.

[35] LeRoy Johuson. do considercd obviously odd in three dimensions. ACM Sig-
plan Notices, 15(12):44, December 1980.

(36] M. Jokinen. A language-independent prettyprinter. Journal of Software
Practice and Experience, 19(9):839-856, 1989.

[37] Daniel Keller. A guide to natural naming. ACM Sigplan Notices, 25(5):95-
102, May 1990.

(38] B. W. Kernighan and D.M. Richie. The C Programming Language.
Prentice-Hall, Englewood Cliffs, NJ, 1978.

(39] Brian W. Kernighan and P. J. Plauger. The Elements of Programming
Style. McGraw-Hill Book Company, 1978.

[40] Donald E. Knuth. Structured programming with go to statements. In Ray-
mond T. Yeh, editor, Current Trends in Programming Methodology,
pages 140-194. Prentice-Hall, Englewood Cliffs, NJ, 1977. Volume 1, Software
Specification and Design.

[41] Donald E. Knuth. Literate programming. The Computer Journal, 27(2):97-
111, 1984.

(42] T. A. Kovats. Program readability, closing keywords and prefix-style interme-
diate keywords. ACM Sigplan Notices, 13(11):30-42, November 157S.

[43] Al Lake and Curtis Ccok. An automated program style analyzer for pascal.
ACM Sigcse Bulletin, 22(3):29-34, September 1990.

=1

w

[44] Henry Ledgard and John Tauer. Programming Practice, volume 2 of Pro-
fessional Software. Addison-Weseley, 1987.

[45] D. W. Leinbaugh. Indenting for the computer. ACM Sigplan Notices,
15(5):41~48, May 1980.

[46] John McCarthy. History of Lisp. In Richard L. Wexelblat, editor, History of
Programming Languages. ACM Sigplan, Academic Press, 1981. from the
History of Programming Languages Conference, June 1-3, 1978.

{47] Michael Metcall and John Reid. Fortran 8x Explained. Oxford University
Press, 1989.

[48] Richard J. Miara, Joyce A. Musselman, Juan A. Navarro, and Ben Schneider-
man. Program indentation and comprehensibility. Communications of the
ACM, 26(11):861-867, 1983.

[49] Carol Bergfeld Mills and Linda J. Weldon. Reading text from computer screens.
ACM Computing Surveys, 19(4):329-358, December 1987.

[50] Peter G. Neumann. Risks to the public in computers and related systems. Soft-
ware Engineering Notes, 15(2):3-23, April 1990. From “Gimme a ’Break’
...Or would you rather 'Switch’?” submitted by a contributer.

[51] Peter R. Newsted. Flowchart-free approach to documentation. Journal of
Systems Management, 30(4):18-21, April 1979.

[52] Paul W. Oman and Curtis R. Cook. A paradigm for programming style research.
ACM Sigplan Notices, 23(12):69-78, December 1988.

[53] Paul W. Oman and Curtis R. Cook. Typographic style is more than cosmetic.
Communications of the ACM, 33(5):506-520, 1990.

[54] Donald G. Patterson and Miles A. Tinker. Influence of type form on speed of
recading. Journal of Applied Psychology, 12:359-368, 1928.

[55] Donald G. Patterson and Miles A. Tinker. Readability of newspaper headlines
printed in capitals and lowercase. Journal of Applied Psychology, 30:161-
168, April 1946.

[56] P.J. Plauger. Programming on purpose. Computer Language, 5(4):17-22,
April 1988.

[57) E. C. Poulton and C. Helen Brown. Rate of comprehension of an existing
teleprinter output and of possible alternatives. Journal of Applied Psychol-
ogy, 52:16-21, April 1968.

74

[538] Roger S. Pressman. Software Engineering: A Practitioner’s Approach.
McGraw-Hill, 1982,

[59] John Ramsdell. Prettyprinting structured programs with connector lines.
ACM Sigplan Notices, 14(9):74-75, September 1979.

[60] Norman Ramsey. Weaving a language-independent Web. Communications
of the ACM, 32(9):1051-10535, September 1989.

(61] Jean E. Sammet. Programming Languages: History and Fundamentals.

Prentice-Hall, Inc., 1969.

[62] Wayne Sewell. Weaving A Program: Literate Programming in WEB.
Van Nostrand Reinhold, 1939.

(63] Gregg Taylor. On being APL literate. APL Quote Quad, 20(1):17-19,
September 1989.

(64] H. Thimbleby. Experiences of ‘Literate Programming’ using cweb (a variant of
Knuth's web). The Computer Journal, 29(3):201-211, 1986.

[65] William H. Trotter, Jr. Crystal Clear Cobol. Prentice-Hall, Englewood
Cliffs, NJ, 1989.

[(66] Dennie van Tassel. Program Style, Design, Efficiency, Debugging, and
Testing. Prentice-Hall, Englewood Cliffs, NJ, 1978.

[67] Aard van Wijngaarden, B. J. Mailloux, J. E. L.Peck, C. H. A. Koster, M. Sint-
zoff, C. H. Lindsey, L. G. T. T. Meertens, and R. G. Fisker. Revised Report
on the Algorithmic Language Algol 68. Springer-Verlag, 1976.

(68] Allen G. Vartabedian. The effect of letter size, case, and generation method on
CRT display search time. Human Factors, 13(4):363-368, August 1971.

[69] Gerald M. Weinberg. The Psychology of Computer Programming. Van
Nostrand Reinhold, 1971.

[70] Gerald M. Weinberg and Ecward L. Schulman. Goals and performance in com-
puter programming. Human Factors, 16(1):70-77, February 1974.

[71] L. M. Weissman. Psychological complexity of computer programs: An experi-
mental methodology. ACM Sigplan Notices, 15(6):25-36. June 1074.

(72} Richard L. Wexelblat. Maxims for malfeasant designers, or How to design lan-
guages to make programming as difficult as possible. In Proceedings of the
2nd International Conference on Software Engineering. pages 331- 336,
1976.

75
(73] Richard L. Wexelblat, editor. History of Programming Languages. Aca-

demic Press, 1981.

[74] Niklaus Wirth. The programming language Pascal. Acta Informatica,
1(1):35-63, 1971.

[753] Niklaus Wirth. On the composition of well structured programs. ACM Com-
puting Surveys, 6(4):247-259, December 1974.

[76] Niklaus Wirth. Design and implementation of Modula. Software Practice
and Experience, 7(1):67-84, 1977.

[77] Niklaus Wirth. Programming in Modula-2. Springer-Verlag, 1983.

[78] William A. Wulf. A case against the goto. In Proceedings of the 25th
National ACM Conference, pages 791-797.

[79] J. M. Yohe. An overview of programming practice. ACM Computing Sur-
veys, 6(4):221-245, December 1974.

